Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Assessment of grinding additives for promoting chromite liberation
Date
2019-06-01
Author
Camalan, Mahmut
Hoşten, Çetin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Liberation of the valuable minerals of an ore from its gangue is a prerequisite for the economic recovery of the valuable minerals to concentrates. Mineral liberation is achieved by reducing the size of ore particles in various crushing and grinding devices. The fineness to which the ore must be ground, so as to yield sufficient degrees of liberation, increases if the valuable minerals with small grain sizes are disseminated throughout the gangue. Intensive fine grinding, however, increases energy costs and can lead to the loss of very fine untreatable particles into the tailings. Therefore, research should be oriented toward developing methods to foster breakage through the mineral grain boundaries to accomplish liberation at relatively coarser grinds. The purpose of this study is to determine if the pretreatment of the samples of a chromite ore with aqueous solutions of some salt and surfactant additives could improve the liberation by promoting preferential fracturing at the grain boundaries between the chromite and silicate minerals in the ore. For this purpose, untreated and pretreated samples of - 9.53 + 6.35 mm size fraction of the ore were broken in a drop-weight tester, and the liberation spectra and the mass distribution of the resultant progenies were measured and compared. Optical and scanning electron microscope images and spectroscopic tools were used to find evidence for grain-boundary fracturing in the breakage progeny fragments. Results support the promoting effect of hydrolysis on grain-boundary fracturing. Aqueous salt and surfactant species enhance grain-boundary fracturing by forming surface complexes and dislocating aluminum atoms at the grain boundaries. Grain-boundary fracturing yields exposed chromite surfaces and enriched chromite content in the coarse progeny particles. The grain-boundary weakening is associated with slight hardness variation along the boundary.
Subject Keywords
Control and Systems Engineering
,
Geotechnical Engineering and Engineering Geology
,
Mechanical Engineering
,
General Chemistry
URI
https://hdl.handle.net/11511/57402
Journal
MINERALS ENGINEERING
DOI
https://doi.org/10.1016/j.mineng.2019.03.004
Collections
Department of Mining Engineering, Article