Mechanical, electrical, and melt flow properties of polyurethane elastomer/surface-modified carbon nanotube composites

2017-06-01
Tayfun, Umit
KANBUR, YASİN
ABACI, UFUK
Guney, Hasan Yuksel
Bayramlı, Erdal
Carbon nanotube-reinforced polyurethane elastomer composites were prepared by melt-mixing. Nitric acid oxidation and silanization were applied to carbon nanotube surfaces to achieve better interfacial interactions with polyurethane elastomer. Tensile and hardness tests, differential scanning calorimetry, melt flow index test, dielectric measurements, and morphological studies of composites were reported. The best results were obtained for surface-modified carbon nanotubes containing composites with lower loading levels. Addition of carbon nanotubes leads to almost two-fold increase in strain and modulus compared to pristine polyurethane elastomer. Tensile strength of composites was also improved by inclusion of carbon nanotubes. However, strength values drop down with increasing carbon nanotube content. Shore hardness increased with the inclusion of modified carbon nanotube to polyurethane elastomer while pristine carbon nanotube caused remarkable decrease in hardness of polyurethane elastomer. Relatively higher melting points and slightly lower glass transition temperatures were observed for carbon nanotube-loaded composites compared to polyurethane elastomer because of plasticizing effect of carbon nanotube. Incorparation of carbon nanotube to polyurethane elastomer matrix caused reduction in melt flow index values due to formation of agglomarates, and n the contrary, surface modifications of carbon nanotube exhibited increase in melt flow index thanks to enhanced interfacial interactions between carbon nanotube and polyurethane elastomer. Significant increase in dielectric constant of composites was observed. Better dispersion of surface modified carbon nanotubes into polyurethane elastomer was also concluded from SEM micrographs of composites.
JOURNAL OF COMPOSITE MATERIALS

Suggestions

Mechanical, electrical and thermal properties of carbon fiber reinforced poly(dimethylsiloxane)/polypyrrole composites
Cakmak, G; Kucukyavuz, Z; Kucukyavuz, S; Cakmak, H (2004-01-01)
Conductive and flexible carbon fiber (CF) reinforced polydimethylsiloxane (PDMS)/polypyrrole (PPy) composites were synthesized electrochemically. Electrochemical synthesis was performed at + 1.1 V using p-toluenesulfonic acid as supporting electrolyte and water as solvent. Composites were characterized by thermal gravimetric analysis, scanning electron microscopy (SEM), conductivity measurements and mechanical tests. Conductivities of composites were observed in the range of 2.2-4 S/cm. SEM studies show tha...
MECHANICAL PROPERTIES OF REPAIRED CARBON FIBER REINFORCED POLYMER COMPOSITES
Sonat, Emine Evren; Özerinç, Sezer; Department of Mechanical Engineering (2021-12-10)
Carbon fiber reinforced polymer (CFRP) composites are increasingly used in the aerospace industry due to their high specific strength compared to conventional metallic materials. However, a significant shortcoming of these composites is their increased susceptibility to damage. Structural repair is a common method to restore the load-carrying capacity of a damaged part when the damage size exceeds the pre-defined tolerances. Scarf and stepped bonded repair methods are the primary choice for cases that requi...
Effect of carbon nanotube surface treatment on the morphology, electrical, and mechanical properties of the microfiber-reinforced polyethylene/poly(ethylene terephthalate)/carbon nanotube composites
Yesil, Sertan; Bayram, Göknur (2013-01-15)
The aim of this study is to investigate the effects of carbon nanotube (CNT) chemical properties, CNT content, and molding temperature on the morphology, electrical, and mechanical properties of the microfiber-reinforced polymer composites. These composites were prepared by extrusion and hot stretching the poly(ethylene terephthalate) (PET)/CNT phase in high density polyethylene (HDPE) matrix. Surfaces of the CNT were modified by purification with strong acid mixture (HNO3 : H2SO4 mixture 1 : 1 by volume) f...
Mechanical, flow and electrical properties of thermoplastic polyurethane/fullerene composites: Effect of surface modification of fullerene
Tayfun, Umit; KANBUR, YASİN; ABACI, UFUK; GÜNEY, HASAN YÜKSEL; Bayramlı, Erdal (2015-10-01)
Thermoplastic polyurethane (TPU) composites with fullerene loadings varying from 0.5 to 2 weight% were prepared by melt-mixing method. Nitric acid oxidation and silanization were applied to fullerene surface to improve interfacial interactions with TPU matrix. The influence of surface modifications of fullerene on mechanical, melt flow and electrical properties of TPU based composites were investigated. Incorporation of fullerene leads to nearly twofold increase in tensile strength and Young's modulus of th...
Modelling and analyis of multı-walled carbon nanotube reinforced polymer composites
Fatima, Bushra; Esat, Volkan; Sustainable Environment and Energy Systems (2016-8)
In this study, multi-walled carbon nanotubes (MWNTs) and multi walled carbon nanotube reinforced epoxy composites (CNTRPs) are investigated by means of computational modelling. To begin with, individual tubes of MWNTs are modelled with varying chiralities through equivalent continuum modelling in order to examine their essential mechanical properties including Young’s modulus, shear modulus, and Poisson’s ratio. The finite element models developed incorporate beam elements that represent Carbon-Carbon ...
Citation Formats
U. Tayfun, Y. KANBUR, U. ABACI, H. Y. Guney, and E. Bayramlı, “Mechanical, electrical, and melt flow properties of polyurethane elastomer/surface-modified carbon nanotube composites,” JOURNAL OF COMPOSITE MATERIALS, pp. 1987–1996, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57407.