Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Structural properties of copper nanoparticles: Modified diffusion Monte Carlo simulations
Date
2006-08-01
Author
Dugan, Nazim
Erkoç, Şakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
164
views
0
downloads
Cite This
Brief information about nanoparticles and size dependency of their properties is given. Structural properties of copper nanoparticles, Cu-n (n = 50, 100, 150) have been investigated by a modified version of diffusion Monte Carlo method, using an empirical pair potential developed and parameterized for copper. Radial distribution of atoms and the coordination numbers are investigated by the optimum geometries obtained. It has been found that stable structures of copper nanoparticles considered have compact spherical shapes.
Subject Keywords
Mathematical Physics
,
Computational Theory and Mathematics
,
General Physics and Astronomy
,
Statistical and Nonlinear Physics
,
Computer Science Applications
URI
https://hdl.handle.net/11511/57535
Journal
INTERNATIONAL JOURNAL OF MODERN PHYSICS C
DOI
https://doi.org/10.1142/s0129183106009722
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Structural and electronic properties of dipropyl sulfide: A theoretical investigation
Calisir, Emine Deniz; Erkoç, Şakir (World Scientific Pub Co Pte Lt, 2006-08-01)
The structural, vibrational, electronic and QSAR properties of the dipropyl sulfide (DPS) molecule in gas phase have been investigated theoretically by performing semi-empirical molecular orbital (AM1 and PM3), ab initio (RHF) and density functional theory calculations. The geometry of the molecule has been optimized, infrared spectrum (vibrational modes and intensities) and the electronic properties of the molecule have been calculated in its ground state. It has been found that DPS molecule kinetically ma...
Structural and electronic properties of AlP doped Huckel type cyclacene with four benzenoid rings
Erkoc, S; Malcıoğlu, Osman Barış (World Scientific Pub Co Pte Lt, 2003-11-01)
Cyclacene of the Huckel type having four benzenoid rings have been subjected to centric perturbations along both peripheral circuits such that Al and P atoms are alternatingly located. The present structure of perturbed cyclacene let two types of isomeric compounds to arise such that in one case the peri-positions and fusion-points occupied by Al and P atoms, respectively and in the other case reversal of occupation of locations occur. For these structures, AM1-RHF type semi-empirical calculations have been...
Structural features and energetics of ZnkCdl microclusters
Amirouche, Lynda; Erkoç, Şakir (World Scientific Pub Co Pte Lt, 2003-09-01)
An empirical many-body potential energy function has been developed to investigate the structural features and energetics of ZnkCdl (k + 1 = 3, 4) microclusters. The most stable structures were found to be triangular for the three-atom clusters and tetrahedral for the four-atom clusters. The present results are in good agreement with available literature values.
Structural and electronic properties of the DPPC molecule
Erkoç, Şakir; Korkmaz, Filiz (World Scientific Pub Co Pte Lt, 2006-07-01)
The structural and electronic properties of the DPPC molecule have been investigated theoretically by performing semi-empirical self-consistent-field molecular-orbital theory calculations at the PM3 level in its ground state.
Structural and electronic properties of (CnLi)(+) cluster ions
Yazgan, E; Erkoc, A (World Scientific Pub Co Pte Lt, 2005-02-01)
The structural and electronic properties of (CnLi)(+) cluster ions with n = 1-6 and n = 20 have been investigated by performing density functional theory calculations at B3LYP level. The vibrational frequencies of the clusters are also calculated.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Dugan and Ş. Erkoç, “Structural properties of copper nanoparticles: Modified diffusion Monte Carlo simulations,”
INTERNATIONAL JOURNAL OF MODERN PHYSICS C
, pp. 1171–1177, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57535.