Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Finding all nondominated points of multi-objective integer programs
Date
2013-10-01
Author
LOKMAN, BANU
Köksalan, Mustafa Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
196
views
0
downloads
Cite This
We develop exact algorithms for multi-objective integer programming (MIP) problems. The algorithms iteratively generate nondominated points and exclude the regions that are dominated by the previously-generated nondominated points. One algorithm generates new points by solving models with additional binary variables and constraints. The other algorithm employs a search procedure and solves a number of models to find the next point avoiding any additional binary variables. Both algorithms guarantee to find all nondominated points for any MIP problem. We test the performance of the algorithms on randomly-generated instances of the multi-objective knapsack, multi-objective shortest path and multi-objective spanning tree problems. The computational results show that the algorithms work well.
Subject Keywords
Multiple criteria
,
Combinatorial optimization
,
Nondominated point
URI
https://hdl.handle.net/11511/57724
Journal
JOURNAL OF GLOBAL OPTIMIZATION
DOI
https://doi.org/10.1007/s10898-012-9955-7
Collections
Department of Industrial Engineering, Article
Suggestions
OpenMETU
Core
Identifying preferred solutions in multiobjective combinatorial optimization problems
Lokman, Banu (2019-01-01)
We develop an evolutionary algorithm for multiobjective combinatorial optimization problems. The algorithm aims at converging the preferred solutions of a decision-maker. We test the performance of the algorithm on the multiobjective knapsack and multiobjective spanning tree problems. We generate the true nondominated solutions using an exact algorithm and compare the results with those of the evolutionary algorithm. We observe that the evolutionary algorithm works well in approximating the solutions in the...
Finding a representative nondominated set for multi-objective mixed integer programs
Ceyhan, Gokhan; Koksalan, Murat; Lokman, Banu (2019-01-01)
In this paper, we develop algorithms to find small representative sets of nondominated points that are well spread over the nondominated frontiers for multi-objective mixed integer programs. We evaluate the quality of representations of the sets by a Tchebycheff distance-based coverage gap measure. The first algorithm aims to substantially improve the computational efficiency of an existing algorithm that is designed to continue generating new points until the decision maker (DM) finds the generated set sat...
Finding highly preferred points for multi-objective integer programs
LOKMAN, BANU; Köksalan, Mustafa Murat (Informa UK Limited, 2014-01-01)
This article develops exact algorithms to generate all non-dominated points in a specified region of the criteria space in Multi-Objective Integer Programs (MOIPs). Typically, there are too many non-dominated points in large MOIPs and it is not practical to generate them all. Therefore, the problem of generating non-dominated points in the preferred region of the decision-maker is addressed. To define the preferred region, the non-dominated set is approximated using a hyper-surface. A procedure is developed...
An interactive approach for biobjective integer programs under quasiconvex preference functions
Ozturk, Diclehan Tezcaner; Köksalan, Mustafa Murat (2016-09-01)
We develop an interactive algorithm for biobjective integer programs that finds the most preferred solution of a decision maker whose preferences are consistent with a quasiconvex preference function to be minimized. During the algorithm, preference information is elicited from the decision maker. Based on this preference information and the properties of the underlying quasiconvex preference function, the algorithm reduces the search region and converges to the most preferred solution progressively. Findin...
Efficient and Accurate Electromagnetic Optimizations Based on Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2016-01-01)
We present electromagnetic optimizations by heuristic algorithms supported by approximate forms of the multilevel fast multipole algorithm (MLFMA). Optimizations of complex structures, such as antennas, are performed by considering each trial as an electromagnetic problem that can be analyzed via MLFMA and its approximate forms. A dynamic accuracy control is utilized in order to increase the efficiency of optimizations. Specifically, in the proposed scheme, the accuracy is used as a parameter of the optimiz...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. LOKMAN and M. M. Köksalan, “Finding all nondominated points of multi-objective integer programs,”
JOURNAL OF GLOBAL OPTIMIZATION
, pp. 347–365, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57724.