Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design and Analysis of Nanoantenna Arrays for Imaging and Sensing Applications at Optical Frequencies
Date
2019-01-01
Author
Isiklar, Goktug
Cetin, Isa Can
Algun, Mustafa
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
117
views
0
downloads
Cite This
We present computational analysis of nanoantenna arrays for imaging and sensing applications at optical frequencies. Arrays of metallic nanoantennas are considered in an accurate simulation environment based on surface integral equations and the multilevel fast multipole algorithm developed for plasmonic structures. Near-zone responses of the designed arrays to nearby nanoparticles are investigated in detail to demonstrate the feasibility of detection. We show that both metallic and dielectric nanoparticles, even with subwavelength dimensions, can be detected.
Subject Keywords
Light
,
Nanoantenna
,
Metamaterials
,
EMC
,
RFID
,
MIMO
,
MMIC
,
Radiation
,
Bluetooth
,
Slot antenna
,
Microstrip antenna
,
Maxwell equations
,
SRR
,
FDTD
,
C-band
,
UWB
,
X-band
,
Absorption
,
Scattering
,
VSWR
,
Plasmonics
URI
https://hdl.handle.net/11511/57745
Journal
ADVANCED ELECTROMAGNETICS
DOI
https://doi.org/10.7716/aem.v8i2.1010
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Design and analysis of ultrashort femtosecond laser amplifiers
Doğan, Ersin; Bilikmen, Kadri Sinan; Department of Physics (2006)
This thesis presents a compact femtosecond laser amplifier design for optical preamplifiers and power amplifiers consist of theoretical perspective, simulations to analyze and optimize beam performance. The propagation through optical media is simulated for every optical component such as mirrors and nonlinear crystal separately and suggested realignment of these components required increasing amplifier performance. Finally Gaussian beam propagation and aberration compensation has been conducted.
Design, Simulation, and Fabrication of Broadband Inkjet-Printed Log-Periodic Antennas
Dolapci, Turker; Mutlu, Feza; Ergül, Özgür Salih (2017-09-27)
We present design and computational analysis of log-periodic antennas that are fabricated by using low-cost inkjet printing technology. The designed antennas operate in the 1.5-2.5 GHz range and are suitable for diverse applications, including energy harvesting at WiFi and GSM bands. Suitable designs are fabricated by using silver-based inks in standard commercial printers. Despite the challenges in both design and fabrication processes, we demonstrate log-periodic antennas with desired operating properties...
Investigation of Alternative Array Configurations of Nanowires for Maximum Power Transmission at Optical Frequencies
Karaosmanoglu, Bariscan; Satana, Hasan Aykut; Dikmen, Fatih; Ergül, Özgür Salih (2017-07-14)
We present a computational analysis and comparison of nanowire arrays for efficient transmission of electromagnetic power at optical frequencies. A reliable simulation environment involving the multilevel fast multipole algorithm for fast iterative solutions of surface integral equations is used to accurately compute field intensity and power density values in the vicinity of nanowires in diverse configurations. The results demonstrate favorable properties of honeycomb structures that can provide efficient ...
Design and analysis of nano-optical networks consisting of nanowires and optimized couplers
Altinoklu, Askin; Karaova, Gokhan; Ergül, Özgür Salih (2019-09-01)
We present computational design and investigation of nano-optical systems involving nanowires and well-designed nano-couplers to effectively transmit electromagnetic power in nanometer scales. Different nano-couplers, which consist of optimal arrangements of nano-cubes, are carefully designed by considering various scenarios, e.g., nanowire lines with sharp corners and junctions. An efficient combination of genetic algorithms and the multilevel fast multipole algorithm is used to find suitable configuration...
Development of multiband microstrip antennas for GPS applications
Önder, Mustafa Caner; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2019)
In this thesis study, the design, fabrication and measurements of dualband and triband circularly polarized microstrip antennas for GPS applications are presented. Characteristic mode analysis technique is applied to get an insight into circularly polarized patch antennas. A design flow is presented for a circularly polarized L1 GPS band microstrip antenna by using characteristic mode analysis. A single fed L1/L2 GPS band right hand circularly polarized four-slotted patch antenna is designed by using reacti...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Isiklar, I. C. Cetin, M. Algun, and Ö. S. Ergül, “Design and Analysis of Nanoantenna Arrays for Imaging and Sensing Applications at Optical Frequencies,”
ADVANCED ELECTROMAGNETICS
, pp. 18–27, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57745.