From carbon nanotubes to carbon nanorods

2000-09-01
Erkoç, Şakir
The structural properties of single and multi-wall carbon nanotubes and the formation of carbon nanorods from multi-wall carbon nanotubes have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanorod formation takes place with smallest possible multi-wall nanotubes under heat treatment. On the other hand, it has been also found that single-wall carbon nanotubes are stronger than the multi-wall nanotubes against heat treatment.
INTERNATIONAL JOURNAL OF MODERN PHYSICS C

Suggestions

Structural properties of carbon nanorods: Molecular-dynamics simulations
Erkoc, S; Malcıoğlu, Osman Barış (2002-03-01)
The formation of carbon nanorods from various types of carbon nanotubes has been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanorod formed from carbon nanotubes with different chirality is not stable even at low temperature.
Effect of chirality on the stability of carbon nanotubes : Molecular-dynamics simulations
Erkoc, S; Malcıoğlu, Osman Barış (2001-07-01)
The effect of chirality on the structural stability of single-wall carbon nanotubes have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanotube in chiral structure is more stable under heat treatment relative to zigzag and armchair models. The diameter of the tubes is slightly enlarged under heat treatment.
Structural stability of carbon nanocapsules: Molecular-dynamics simulations
Malcıoğlu, Osman Barış; Yilmaz, A; Erkoc, S (2003-09-12)
Structural stability of empty and endohedrally doped carbon nanocapsules have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that empty carbon nanocapsules are relatively more stable with respect to endohedrally doped ones against heat treatment.
Stability of carbon nanotori
Yazgan, E; Tasci, E; Malcıoğlu, Osman Barış; Erkoç, Şakir (2003-09-12)
The structural stability of carbon nanotori have been investigated by performing molecular--dynamics simulations. The systems considered are C-170, C-360, C-520, and C-750 tori, which have been constructed using an algorithm developed in our laboratory based on Fonseca's idea. Calculations have been realized by using an empirical many-body potential energy function for carbon.
Simulation of carbon nanotube junction formations
Tasci, E; Malcıoğlu, Osman Barış; Erkoc, S (2003-09-12)
In this work we have examined the possible formation of a junction between two identical C(10,0) carbon nanotubes. One of the tubes was rotated 90 degrees with respect to the other. Simulation have been performed by means of a molecular-dynamics technique at 1K. For this purpose, we have introduced two stiff layers of graphite positioned above and below the nanotubes. By moving these layers we have created an effective force pushing the tubes closer to each other. In this simulation we have used a semi-empi...
Citation Formats
Ş. Erkoç, “From carbon nanotubes to carbon nanorods,” INTERNATIONAL JOURNAL OF MODERN PHYSICS C, pp. 1247–1255, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57827.