Use of purified and modified bentonites in linear low-density polyethylene/organoclay/compatibilizer nanocomposites

2012-05-05
Seyidoglu, Tijen
Yılmazer, Ülkü
Polyethylene-based ternary nanocomposites were prepared with different clay structures, obtained by the modification of purified Resadiye bentonite as the reinforcement, a random terpolymer of ethylene, butyl acrylate, and maleic anhydride with the trade name Lotader3210 as the compatibilizer, and linear low-density polyethylene (LLDPE) as the polymer matrix in an intensive batch mixer. The quaternary ammonium/phosphonium salts used for the modification of bentonite were dimethyldioctadecyl ammonium (DMDA) chloride (Cl), tetrakisdecyl ammonium (TKA) bromide (Br), and tributylhexadecyl phosphonium (TBHP) Br. The effects of the physical properties and structure of the organoclay on the clay dispersion were studied at different clay contents (2 and 5 wt %) and at a compatibilizer/organoclay ratio of 2.5. The extent of organoclay dispersion was determined by X-ray diffraction (XRD) and was verified by transmission electron microscopy (TEM), mechanical testing, and rheological analysis. XRD analysis showed that the nanocomposite with the organoclay DMDA contained intercalated silicate layers, as also verified by TEM. The TEM analysis of the nanocomposites with TBHP exhibited intercalated/partially exfoliated clay dispersion. TKA, with a crowded alkyl environment, sheltered and hindered the intercalation of polymer chains through the silicate layers. In comparison to pure LLDPE, nanocomposites with a 33-41% higher Young's modulus, 169% higher tensile strength, and 75-144% higher elongation at break were produced with DMDA and TBHP, respectively (at 5 wt % organoclay). The storage modulus increased by 807-1393%, and the dynamic viscosity increased by 196339% with respect to pure LLDPE at low frequencies for the samples with DMDA and TBHP (at 5 wt % organoclay). (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
JOURNAL OF APPLIED POLYMER SCIENCE

Suggestions

Production of modified clays and their use in polypropylene-based nanocomposites
Seyidoglu, Tijen; Yılmazer, Ülkü (2013-01-15)
The use of modified bentonite as a reinforcement in polypropylene (PP)/organoclay/maleic anhydride grafted polypropylene (MAPP) nanocomposites was investigated. The modified bentonites (organoclays) were prepared from raw (unpurified) bentonite (RB) and two quaternary ammonium salts with long alkyl tails: hexadecyl trimethyl ammonium bromide [HDA][Br] and tetrakisdecyl ammonium bromide [TKA][Br]. The ternary composites were produced by using a corotating twin screw extruder, followed by injection molding, a...
Synthesis of conducting block copolymers and their use in the immobilization of invertase and polyphenol oxidase enzyme
Kıralp, Senem; Kıralp, Senem; Department of Chemistry (2004)
A new thiophene derivative containing menthyl group (MM) was synthesized and polymerized via chemical and electrochemical methods. Polymers obtained and MM itself were used to synthesize copolymers with pyrrole under conditions of constant potential electrolysis. Cyclic Voltammetry, thermal analysis and scanning electron microscopy analyses were performed for the characterization of samples. Immobilization of invertase and polyphenol oxidase enzymes was performed in the matrices obtained via copolymerizatio...
Effects of boron compound on characteristics of poly(methyl methacrylate) and its nanocomposites
Göktaş, Müberra; Hacaloğlu, Jale; Yılmaz, Ayşen; Department of Polymer Science and Technology (2016)
In this work, composites of poly(methyl methacrylate) and benzene-1,4diboronic acid (BDBA) and their nanocomposites with organically modified montmorillonite OMMT prepared by solution and melt mixing, were characterized to study effects of boron content and the preparation method on the properties of PMMA. SEM images showed homogeneous dispersion of BDBA particles for the melt blended, whereas, agglomeration for the solution mixed PMMA/BDBA composites. XRD and TEM results of PMMA nanocomposites indicated th...
Synthesis of block conducting copolmers of cholesteryl functionalized thiophene and their use in the immobilization of cholesterol oxidase
Çırpan, Ali; Toppare, Levent Kamil; Department of Chemistry (2004)
Synthesis and characterization of conducting copolymers were achieved by using thiophene-3-yl acetic acid cholesteryl ester (CM) and poly (3-methylthienyl methacrylate) (PMTM). A new polythiophene containing a cholesteryl side chain in the b- position was chemically polymerized in nitromethane/carbon tetrachloride using FeCl3 as the oxidizing agent. Polymerization was also achieved by constant current electrolysis in dichloromethane. Subsequently, conducting copolymers of thiophene-3-yl acetic acid choleste...
Synthesis and characterization of a polybenzoxazine from a difunctional amine and a trifunctional phenol
Kaya, Şafak; Tinçer, Teoman; Department of Polymer Science and Technology (2009)
Synthesis of a polymer with benzoxazine units in the main chain backbone by a trifunctional phenol, a difunctional amine, and paraformaldehyde was achieved. Thermal, mechanical and spectroscopic characterization and the viscosity properties of the synthesized polymer were studied. In the first step of this study, a fast and feasible method for the synthesis of the benzoxazine precursors was developed since some methods mentioned in the literature about the synthesis of the benzoxazine derivatives last long ...
Citation Formats
T. Seyidoglu and Ü. Yılmazer, “Use of purified and modified bentonites in linear low-density polyethylene/organoclay/compatibilizer nanocomposites,” JOURNAL OF APPLIED POLYMER SCIENCE, pp. 2430–2440, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57894.