Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
On the generating graphs of symmetric groups
Date
2018-07-01
Author
Erdem, Fuat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
Let S-n and A(n) be the symmetric and alternating groups of degree n, respectively. Breuer, Guralnick, Lucchini, Maroti and Nagy proved that the generating graphs Gamma(S-n) and Gamma(A(n)) are Hamiltonian for sufficiently large n. However, their proof provided no information as to how large n needs to be. We prove that the graphs Gamma(S-n) and Gamma(A(n)) are Hamiltonian provided that n (3) 107.
Subject Keywords
Algebra and Number Theory
URI
https://hdl.handle.net/11511/57911
Journal
JOURNAL OF GROUP THEORY
DOI
https://doi.org/10.1515/jgth-2018-0004
Collections
Department of Mathematics, Article