Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On the generating graphs of symmetric groups
Date
2018-07-01
Author
Erdem, Fuat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
193
views
0
downloads
Cite This
Let S-n and A(n) be the symmetric and alternating groups of degree n, respectively. Breuer, Guralnick, Lucchini, Maroti and Nagy proved that the generating graphs Gamma(S-n) and Gamma(A(n)) are Hamiltonian for sufficiently large n. However, their proof provided no information as to how large n needs to be. We prove that the graphs Gamma(S-n) and Gamma(A(n)) are Hamiltonian provided that n (3) 107.
Subject Keywords
Algebra and Number Theory
URI
https://hdl.handle.net/11511/57911
Journal
JOURNAL OF GROUP THEORY
DOI
https://doi.org/10.1515/jgth-2018-0004
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Good action on a finite group
Ercan, Gülin; Jabara, Enrico (Elsevier BV, 2020-10-01)
Let G and A be finite groups with A acting on G by automorphisms. In this paper we introduce the concept of "good action"; namely we say the action of A on G is good, if H = [H, B]C-H (B) for every subgroup B of A and every B-invariant subgroup H of G. This definition allows us to prove a new noncoprime Hall-Higman type theorem.
The distributive hull of a ring
Erdoğdu, Vahap (Elsevier BV, 1990-8)
Let R be a commutative ring with identity. An extension MS N of R-modules is said to be distributive if it satisfies the following condition: Mn(X+ Y)=(MnX)+(Mn Y), for all submodules X, Y of N. In [2], Davison has shown that every R-module M which is locally non- zero at every maximal ideal of R has a maximal distributive extension and has raised the question: Is this unique up to M-isomorphism, in which case one can denote it by D(M) and call it the distributive hull of M [l, 51. In this paper we answer t...
A characterization of riesz n-morphisms and applications
AKKAR ERCAN, ZÜBEYDE MÜGE; Önal, Süleyman (Informa UK Limited, 2008-03-01)
Let X-1 I X-2,..., X-n be realcompact spaces and Z he a topological space. Let pi : C(X-1)X C(X-2) X... X C(X-n)-> C(Z) be a Riesz n-morphism. We show that there exist functions sigma(i) : Z -> X-i (i = 1, 2,..., n) and w epsilon C(Z) such that
Some sufficient conditions for p-nilpotency of a finite group
Kızmaz, Muhammet Yasir (Informa UK Limited, 2019-09-02)
Let G be a finite group and let p be prime dividing . In this article, we supply some sufficient conditions for G to be p-nilpotent (see Theorem 1.2) as an extension of the main theorem of Li et al. (J. Group Theor. 20(1): 185-192, 2017).
Invariant subspaces for banach space operators with a multiply connected spectrum
Yavuz, Onur (Springer Science and Business Media LLC, 2007-07-01)
We consider a multiply connected domain Omega = D \U (n)(j= 1) (B) over bar(lambda(j), r(j)) where D denotes the unit disk and (B) over bar(lambda(j), r(j)) subset of D denotes the closed disk centered at lambda(j) epsilon D with radius r(j) for j = 1,..., n. We show that if T is a bounded linear operator on a Banach space X whose spectrum contains delta Omega and does not contain the points lambda(1),lambda(2),...,lambda(n), and the operators T and r(j)( T -lambda I-j)(-1) are polynomially bounded, then th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Erdem, “On the generating graphs of symmetric groups,”
JOURNAL OF GROUP THEORY
, pp. 629–649, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57911.