Electronic properties of open-ended single wall carbon nanotubes

2002-01-31
Turker, L
Erkoç, Şakir
We have investigated the electrostatic, charge and orbital properties of open-ended single-wall carbon nanotubes in zigzag geometry. The calculations were performed by using the AM1-RHF semiempirical molecular orbital method. It has been found that the tubes with smaller radius behave like a metallic solid whereas the tubes with larger radius behave like a metallic hollow cylinder.
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM

Suggestions

Structural and electronic properties of carbon nanotubes
Erkoç, Şakir (2000-02-01)
The structural and electronic properties of optimized open-ended single-wall carbon nanotubes with zigzag geometry have been investigated. The calculations were performed using molecular mechanics, extended Huckel, and AM1-RHF semiempirical molecular orbital methods. it has been found that the density of states of the zigzag model is sensitive to the tube size and changes as the tube length increases. On the other hand the energetics of the tube shows an almost linear dependence to the tube length, and a co...
Electronic structure of carbon nanotubes: AM1-RHF calculations
Erkoç, Şakir; Turker, L (Elsevier BV, 1999-07-01)
We have investigated the electronic structure of optimized open-ended single-wall carbon nanotubes with armchair and zigzag geometries. The calculations were performed using AM1-RHF semiempirical molecular orbital method. It has been found that the density of states of the zigzag model is more sensitive to the tube size than that of the armchair model.
Magnetic properties of multiband U=infinity Hubbard model on anisotropic triangular and rectangular lattice strips
CHERANOVSKII, VO; Esentürk, Okan; PAMUK, HO (1998-11-01)
We study the dependence of the ground state spin of a multiband Hubbard model with infinite electron repulsion on anisotropic triangular and rectangular lattice strips on the model parameters. Considering the results of numerical calculations for the exact spectra of finite triangular lattice strips at different values of hopping integrals, we show the existence of a type of magnetic transitions with the jump of the ground state spin between minimal and maximal values. This transition is found only for spec...
Electronic properties of a large quantum dot at a finite temperature
Gulveren, B; Atav, U; Tomak, Mehmet (Elsevier BV, 2005-09-01)
The physical properties of a two-dimensional parabolic quantum dot composed of large number of interacting electrons are numerically determined by the Thomas Fermi (TF) method at a finite temperature. Analytical solutions are given for zero temperature for comparative purposes. The exact solution of the TF equation is obtained for the non-interacting system at finite temperatures. The effect of the number of particles and temperature on the properties are investigated both for interacting and non-interactin...
Simulation of carbon nanotube junction formations
Tasci, E; Malcıoğlu, Osman Barış; Erkoc, S (2003-09-12)
In this work we have examined the possible formation of a junction between two identical C(10,0) carbon nanotubes. One of the tubes was rotated 90 degrees with respect to the other. Simulation have been performed by means of a molecular-dynamics technique at 1K. For this purpose, we have introduced two stiff layers of graphite positioned above and below the nanotubes. By moving these layers we have created an effective force pushing the tubes closer to each other. In this simulation we have used a semi-empi...
Citation Formats
L. Turker and Ş. Erkoç, “Electronic properties of open-ended single wall carbon nanotubes,” JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, pp. 131–135, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57920.