Asymptotic solutions of the radial wave equation for cylindrical waveguides

Download
2001
Selman, Sema

Suggestions

Asymptotic solution of the radial wave equation for optical fiber wavequides
Cildlr, Sema; Çakır, Serhat (2006-08-26)
In this study, analytic solutions were studied for propagation of electromagnetic waves in cylindrical fiber optic cable. An asymptotic approach was used to solve radial wave equation The solution was derived for zero order eigenvalue equation. It was found that this solution is more general than other methods. By using a computer program was obtained some diagrams for core and cladding region for different eigenvalue equations and modes.
Asymptotic integration of second-order nonlinear differential equations via principal and nonprincipal solutions
Ertem, T.; Zafer, Ağacık (2013-02-01)
Let u and v denote respectively the principal and nonprincipal solutions of the second-order linear equation (p(t)x')' + q(t)x = 0 defined on some half-line of the form [t(*), infinity).
Asymptotic behavior of positive operators on Banach lattices
Emelyanov, Eduard; Wolff, MPH (2000-01-01)
Asymptotic behavior and oscillation in higher order nonlinear differential equations with retarded arguments
Dahiya, RS; Zafer, Ağacık (1997-08-01)
Asymptotic integration of second-order nonlinear delay differential equations
Agarwal, Ravi P.; Ertem, Tuerker; Zafer, Ağacık (2015-10-01)
We study the asymptotic integration problem for second-order nonlinear delay differential equations of the form (p(t)x' (t))' q(t)x(t) = f (t, x(g(t))). It is shown that if a and v are principal and nonprincipal solutions of equation (p(t)x')' q(t)x = 0, then there are solutions x(1)(t) and x(2) (t) of the above nonlinear equation such that x(1)(t) = au(t) o(u(t)), t -> infinity and x(2)(t) = bv(t) o(v(t)), t -> infinity.
Citation Formats
S. Selman, “Asymptotic solutions of the radial wave equation for cylindrical waveguides,” Middle East Technical University, 2001.