Asymptotic solution of the radial wave equation for optical fiber wavequides

Cildlr, Sema
Çakır, Serhat
In this study, analytic solutions were studied for propagation of electromagnetic waves in cylindrical fiber optic cable. An asymptotic approach was used to solve radial wave equation The solution was derived for zero order eigenvalue equation. It was found that this solution is more general than other methods. By using a computer program was obtained some diagrams for core and cladding region for different eigenvalue equations and modes.


Joint Mitigation of IQ Imbalance and Power Amplifier Impairments by Real Valued Time Delay Neural Networks
Yeşil, Soner; Gürtunca, Burak; Yılmaz, Ali Özgür (2019-08-22)
This paper represents a neural network based joint mitigation of the IQ imbalance and power amplifier nonlinearities that cause degradation in the transmit signal quality of the wireless communication systems. A Real Valued Time Delay Neural Network architecture for this purpose has been verified on a hardware including cascaded NXP-MD8IC925 and NXPBLF8G10LS power amplifier components performing a total of 46dB gain. The test setup has been controlled over MATLAB in order to have a closed loop adaptive digi...
Closed-form Green's functions for cylindrically stratified media
Tokgoz, C; Dural Ünver, Mevlüde Gülbin (2000-01-01)
A numerically efficient technique is developed to obtain the spatial-domain closed-form Green's functions of the electric and magnetic fields due to z- and phi-oriented electric and magnetic sources embedded in an arbitrary layer of a cylindrical stratified medium. First, the electric- and magnetic-field components representing the coupled TM and TE modes are derived in the spectral domain for an arbitrary observation layer The spectral-domain Green's functions are then obtained and approximated in terms of...
Asymmetric transmission of linearly polarized electromagnetic waves using chiral metamaterials with constant chirality over a certain frequency band
Akgöl, Oğuzhan; Dinçer, Furkan; Karaaslan, Muharrem; Ünal, Emin; Sabah, Cumali (World Scientific Pub Co Pte Lt, 2014-12-30)
In this study, a dynamic chiral metamaterial (MTM) structure leading to an asymmetric electromagnetic (EM) wave transmission for linear polarization is presented. The structure is composed of square-shaped resonator with gaps on both sides of a dielectric substrate with a certain degree of rotation. The dynamic structure is adjustable via various parameters to fit any desired frequency ranges. Theoretical and experimental analysis of the proposed structure are conducted and given in detail. The suggested mo...
Computational simulation and realization of three-dimensional metamaterials with various exotic properties
İbili, Hande; Ergül, Özgür Salih; Department of Electrical and Electronics Engineering (2019)
In this study, computational analysis and realization of three-dimensional metamaterial structures that induce negative and zero permittivity and/or permeability values in their host environment, as well as plasmonic nanoparticles that are used to design metamaterials at optical frequencies are presented. All these electromagnetic problems are challenging since effective material properties become negative/zero, while numerical solvers are commonly developed for ordinary positive parameters. In real life, t...
Equipotential projection based magnetic resonance electrical impedance tomography (mr-eit) for high resolution conductivity imaging
Özdemir, Mahir Sinan; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2003)
In this study, a direct reconstruction algorithm for Magnetic Resonance Electrical Impedance Tomography (MR-EIT) is proposed and experimentally implemented for high resolution true conductivity imaging. In MR-EIT, elec trical impedance tomography (EIT) and magnetic resonance imaging (MRI) are combined together. Current density measurements are obtained making use of Magnetic Resonance Current Density Imaging (MR-CDI) techniques and peripheral potential measurements are determined using conventional EIT tech...
Citation Formats
S. Cildlr and S. Çakır, “Asymptotic solution of the radial wave equation for optical fiber wavequides,” 2006, vol. 899, Accessed: 00, 2020. [Online]. Available: