Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Step-up and Step-down Operators of a Two-Term Molecular Potential Via Nikiforov-Uvarov Method
Download
index.pdf
Date
2014-04-01
Author
Arda, Altug
Sever, Ramazan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
239
views
67
downloads
Cite This
The creation and annihilation operators of a two-term diatomic molecular potential are studied and it is observed that they satisfy the commutation relations of a SU(1,1) algebra. To study the Lie algebraic realization of the present potential, the normalized eigenfunctions and eigenvalues are computed by using the Nikiforov-Uvarov method.
Subject Keywords
Atomic and Molecular Physics, and Optics
URI
https://hdl.handle.net/11511/62416
Journal
FEW-BODY SYSTEMS
DOI
https://doi.org/10.1007/s00601-014-0880-9
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
BOUND-STATE ENERGIES FOR THE EXPONENTIAL COSINE SCREENED COULOMB POTENTIAL
IKHDAIR, SM; Sever, Ramazan (Springer Science and Business Media LLC, 1993-09-01)
The energy eigenvalues of bound states of an electron in the general exponential cosine screened Coulomb potential are obtained using the shifted 1/N expansion method. The energies for the states from 1s to 8k are calculated from six to eight significant figures. The energy eigenvalues for the 1s, 2s - 2p, 3s - 3d, and 4s - 4f states are also presented as a function of the screening parameter lambda. Results are compared with the ones obtained by other workers. The agreement reduces roughly for large lambda...
Exact Pseudospin Symmetric Solution of the Dirac Equation for Pseudoharmonic Potential in the Presence of Tensor Potential
AYDOĞDU, OKTAY; Sever, Ramazan (Springer Science and Business Media LLC, 2010-04-01)
Under the pseudospin symmetry, we obtain exact solution of the Dirac equation for the pseudoharmonic potential in the presence of the tensor potential with arbitrary spin-orbit coupling quantum number kappa. The energy eigenvalue equation of the Dirac particles is found and the corresponding radial wave functions are presented in terms of confluent hypergeometric functions. We investigate the tensor potential dependence of the energy of the each state in the pseudospin doublet. It is shown that degeneracy b...
Nondipolar effects in the photoionization dynamics of carbon tetrafluoride
Toffolı, Danıele; Decleva, Piero (American Physical Society (APS), 2008-12-01)
The linear combination of atomic orbitals approach to the calculation of the molecular continuum spectrum with B-spline basis functions has been applied to the calculation of the first-order nondipolar corrections to the photoelectron angular distributions from carbon tetrafluoride. Dipolar and nondipolar asymmetry parameter profiles have been calculated for every single-particle orbital ionization. A comparison with the available experimental data gives good agreement for the dipolar asymmetry parameter. N...
Geometric measures of entanglement
UYANIK, KIVANÇ; Turgut, Sadi (American Physical Society (APS), 2010-03-01)
The geometric measure of entanglement, which expresses the minimum distance to product states, has been generalized to distances to sets that remain invariant under the stochastic reducibility relation. For each such set, an associated entanglement monotone can be defined. The explicit analytical forms of these measures are obtained for bipartite entangled states. Moreover, the three-qubit case is discussed and it is argued that the distance to the W states is a new monotone.
Exact Solutions of Effective-Mass Dirac-Pauli Equation with an Electromagnetic Field
Arda, Altug; Sever, Ramazan (Springer Science and Business Media LLC, 2017-01-01)
The exact bound state solutions of the Dirac-Pauli equation are studied for an appropriate position-dependent mass function by using the Nikiforov-Uvarov method. For a central electric field having a shifted inverse linear term, all two kinds of solutions for bound states are obtained in closed forms.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Arda and R. Sever, “Step-up and Step-down Operators of a Two-Term Molecular Potential Via Nikiforov-Uvarov Method,”
FEW-BODY SYSTEMS
, pp. 265–271, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62416.