Exact polynomial solution of PT-/non-PT-symmetric and non-Hermitian modified Woods-Saxon potential by the Nikiforov-Uvarov method

2007-06-01
Ikhdair, Sameer M.
Sever, Ramazan
UUsing the Nikiforov-Uvarov ( NU) method, the bound state energy eigenvalues and eigenfunctions of the PT-/non-PT-symmetric and non-Hermitian modified Woods-Saxon (WS) model potential with the real and complex-valued energy levels are obtained in terms of the Jacobi polynomials. According to the PT-symmetric quantum mechanics, we exactly solved the time-independent Schrodinger equation with same potential for the s-states and also for any l-state as well. It is shown that the results are in good agreement with the ones obtained before.
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS

Suggestions

Polynomial solution of non-central potentials
Ikhdair, Sameer M.; Sever, Ramazan (Springer Science and Business Media LLC, 2007-10-01)
We show that the exact energy eigenvalues and eigenfunctions of the Schrodinger equation for charged particles moving in certain class of non-central potentials can be easily calculated analytically in a simple and elegant manner by using Nikiforov and Uvarov (NU) method. We discuss the generalized Coulomb and harmonic oscillator systems. We study the Hartmann Coulomb and the ring-shaped and compound Coulomb plus Aharanov-Bohm potentials as special cases. The results are in exact agreement with other methods.
Analytical solution of the Schrodinger equation for Makarov potential with any l angular momentum
Bayrak, O.; Karakoc, M.; Boztosun, I.; Sever, Ramazan (Springer Science and Business Media LLC, 2008-11-01)
We present the analytical solution of the Schrodinger Equation for the Makarov potential within the framework of the asymptotic iteration method for any n and l quantum numbers. Energy eigenvalues and the corresponding wave functions are calculated. We also obtain the same results for the ring shaped Hartmann potential which is the special form of the non-central Makarov potential.
Unified treatment of spacelike and timelike SO(3,1) Yang-Mills fields
Dundarer, AR (Springer Science and Business Media LLC, 2001-07-01)
SO(3, 1) valued Yang-mills fields stemming from spacelike and timelike vectors that were studied separately in earlier works are unified by introducing a parameter lambda that takes values in the interval [-1, 1].
Approximate solution to the time-dependent Kratzer plus screened Coulomb potential in the Feinberg-Horodecki equation
Farout, Mahmoud; Sever, Ramazan; Ikhdair, Sameer M. (IOP Publishing, 2020-06-01)
We obtain the quantized momentum eigenvalues P-n together with space-like coherent eigenstates for the space-like counterpart of the Schrodinger equation, the Feinberg-Horodecki equation, with a combined Kratzer potential plus screened coulomb potential which is constructed by temporal counterpart of the spatial form of these potentials. The present work is illustrated with two special cases of the general form: the time-dependent modified Kratzer potential and the time-dependent screened Coulomb potential.
Analytical Solutions to the Klein-Gordon Equation with Position-Dependent Mass for q-Parameter Poschl-Teller Potential
Arda, Altug; Sever, Ramazan; TEZCAN, CEVDET (IOP Publishing, 2010-01-01)
The energy eigenvalues and the corresponding eigenfunctions of the one-dimensional Klein-Gordon equation with q-parameter Poschl-Teller potential are analytically obtained within the position-dependent mass formalism. The parametric generalization of the Nikiforov-Uvarov method is used in the calculations by choosing a mass distribution.
Citation Formats
S. M. Ikhdair and R. Sever, “Exact polynomial solution of PT-/non-PT-symmetric and non-Hermitian modified Woods-Saxon potential by the Nikiforov-Uvarov method,” INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, pp. 1643–1665, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62434.