Coherent states for PT-/non-PT-symmetric and non-Hermitian Morse potentials via the path integral method

Download
2010-03-01
KANDIRMAZ, NALAN
Sever, Ramazan
We discuss the coherent states for PT-/non-PT-symmetric and non-Hermitian generalized Morse potentials obtained by using path integral formalism over the holomorphic coordinates. We transform the action of generalized Morse potentials into two harmonic oscillators with a new parametric time to establish the parametric time coherent states. We calculate the energy eigenvalues and the corresponding wave functions in parabolic coordinates.

Suggestions

Any l-state improved quasi-exact analytical solutions of the spatially dependent mass Klein-Gordon equation for the scalar and vector Hulthen potentials
IKHDAİR, SAMEER; Sever, Ramazan (IOP Publishing, 2009-03-01)
We present a new approximation scheme for the centrifugal term to obtain a quasi-exact analytical bound state solution within the framework of the position-dependent effective mass radial Klein-Gordon equation with the scalar and vector Hulthen potentials in any arbitrary D dimension and orbital angular momentum quantum numbers l. The Nikiforov-Uvarov (NU) method is used in the calculations. The relativistic real energy levels and corresponding eigenfunctions for the bound states with different screening pa...
Covariant Bethe-Salpeter equation for heavy Q(Q)over-bar bound states
Zakout, I; Sever, Ramazan (IOP Publishing, 1997-02-01)
We investigate a numerical solution of the covariant Bethe-Salpeter equation in the Euclidean space for heavy meson with gluon ladder in the Landau gauge and scalar confinement. A new approach is presented to solve the non-linear eigenvalue problem with suitable bases and fictitious eigenvalue parameters. We obtain unphysical states when the equation is solved for timelike spectra. We also present how to cover the singularity of a free quark propagator and Schwinger-Dyson equation when extrapolated to the ...
Geometric measures of entanglement
UYANIK, KIVANÇ; Turgut, Sadi (American Physical Society (APS), 2010-03-01)
The geometric measure of entanglement, which expresses the minimum distance to product states, has been generalized to distances to sets that remain invariant under the stochastic reducibility relation. For each such set, an associated entanglement monotone can be defined. The explicit analytical forms of these measures are obtained for bipartite entangled states. Moreover, the three-qubit case is discussed and it is argued that the distance to the W states is a new monotone.
Exact Pseudospin Symmetric Solution of the Dirac Equation for Pseudoharmonic Potential in the Presence of Tensor Potential
AYDOĞDU, OKTAY; Sever, Ramazan (Springer Science and Business Media LLC, 2010-04-01)
Under the pseudospin symmetry, we obtain exact solution of the Dirac equation for the pseudoharmonic potential in the presence of the tensor potential with arbitrary spin-orbit coupling quantum number kappa. The energy eigenvalue equation of the Dirac particles is found and the corresponding radial wave functions are presented in terms of confluent hypergeometric functions. We investigate the tensor potential dependence of the energy of the each state in the pseudospin doublet. It is shown that degeneracy b...
Eigenvalues of the two-dimensional Schrodinger equation with nonseparable potentials
Taşeli, Hasan (Wiley, 1996-08-05)
The energy eigenvalues of coupled oscillators in two dimensions with quartic and sextic couplings have been calculated to a high accuracy. For this purpose, unbounded domain of the wave function has been truncated and various combination of trigonometric functions are employed as the basis sets in a Rayleigh-Ritz variational method. The method is applicable to the multiwell oscillators as well. (C) 1996 John Wiley & Sons, Inc.
Citation Formats
N. KANDIRMAZ and R. Sever, “Coherent states for PT-/non-PT-symmetric and non-Hermitian Morse potentials via the path integral method,” PHYSICA SCRIPTA, pp. 0–0, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62438.