Pseudospin and spin symmetry in the Dirac equation with Woods-Saxon potential and tensor potential

2010-01-01
AYDOĞDU, OKTAY
Sever, Ramazan
The Dirac equation is solved approximately for the Woods-Saxon potential and a tensor potential with the arbitrary spin-orbit coupling quantum number kappa under pseudospin and spin symmetry. The energy eigenvalues and the Dirac spinors are obtained in terms of hypergeometric functions. The energy eigenvalues are calculated numerically.
EUROPEAN PHYSICAL JOURNAL A

Suggestions

Exact Pseudospin Symmetric Solution of the Dirac Equation for Pseudoharmonic Potential in the Presence of Tensor Potential
AYDOĞDU, OKTAY; Sever, Ramazan (Springer Science and Business Media LLC, 2010-04-01)
Under the pseudospin symmetry, we obtain exact solution of the Dirac equation for the pseudoharmonic potential in the presence of the tensor potential with arbitrary spin-orbit coupling quantum number kappa. The energy eigenvalue equation of the Dirac particles is found and the corresponding radial wave functions are presented in terms of confluent hypergeometric functions. We investigate the tensor potential dependence of the energy of the each state in the pseudospin doublet. It is shown that degeneracy b...
EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH
Arda, Altug; Sever, Ramazan (2012-09-28)
Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different p...
Pseudospin and Spin Symmetric Solutions of the Dirac Equation: Hellmann Potential, Wei-Hua Potential, Varshni Potential
Arda, Altug; Sever, Ramazan (Walter de Gruyter GmbH, 2014-03-01)
Approximate analytical solutions of the Dirac equation are obtained for the Hellmann potential, the Wei-Hua potential, and the Varshni potential with any K-value for the cases having the Dirac equation pseudospin and spin symmetries. Closed forms of the energy eigenvalue equations and the spinor wave functions are obtained by using the Nikiforov-Uvarov method and some tables are given to see the dependence of the energy eigenvalues on different quantum number pairs (n, K).
Exact solutions of the radial Schrodinger equation for some physical potentials
IKHDAİR, SAMEER; Sever, Ramazan (2007-12-01)
By using an ansatz for the eigenfunction, we have obtained the exact analytical solutions of the radial Schrodinger equation for the pseudoharmonic and the Kratzer potentials in two dimensions. The bound-state solutions are easily calculated from this eigenfunction ansatz. The corresponding normalized wavefunctions are also obtained. (C) Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.
Pseudospin symmetry and its applications
Aydoğdu, Oktay; Sever, Ramazan; Department of Physics (2009)
The pseudospin symmetry concept is investigated by solving the Dirac equation for the exactly solvable potentials such as pseudoharmonic potential, Mie-type potential, Woods-Saxon potential and Hulthén plus ring-shaped potential with any spin-orbit coupling term $\kappa$. Nikiforov-Uvarov Method, Asymptotic Iteration Method and functional analysis method are used in the calculations. The energy eigenvalue equations of the Dirac particles are found and the corresponding radial wave functions are presented in...
Citation Formats
O. AYDOĞDU and R. Sever, “Pseudospin and spin symmetry in the Dirac equation with Woods-Saxon potential and tensor potential,” EUROPEAN PHYSICAL JOURNAL A, pp. 73–81, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62449.