Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Exponential type complex and non-Hermitian potentials within quantum Hamilton-Jacobi formalism
Download
index.pdf
Date
2008-03-01
Author
Yesiltas, Oezlem
Sever, Ramazan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
204
views
0
downloads
Cite This
PT-/non-PT-symmetric and non-Hermitian deformed Morse and Poschl-Teller potentials are studied first time by quantum Hamilton-Jacobi approach. Energy eigenvalues and eigenfunctions are obtained by solving quantum Hamilton-Jacobi equation.
Subject Keywords
Applied Mathematics
,
General Chemistry
URI
https://hdl.handle.net/11511/62562
Journal
JOURNAL OF MATHEMATICAL CHEMISTRY
DOI
https://doi.org/10.1007/s10910-007-9238-6
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Thermal properties of Deng-Fan-Eckart potential model using Poisson summation approach
Edet, C. O.; Okorie, U. S.; Osobonye, G.; Ikot, A. N.; Rampho, G. J.; Sever, Ramazan (Springer Science and Business Media LLC, 2020-05-01)
The Deng-Fan-Eckart potential is as good as the Morse potential in studying atomic interaction in diatomic molecules. By using the improved Pekeris-type approximation, to deal with the centrifugal term, we obtain the bound-state solutions of the radial Schrodinger equation with this adopted molecular model via the Factorization Method. With the energy equation obtained, the thermodynamic properties of some selected diatomic molecules (H-2, CO, ScN and ScF) were obtained using Poisson summation method. The u...
Exact solutions of the Schrodinger equation via Laplace transform approach: pseudoharmonic potential and Mie-type potentials
Arda, Altug; Sever, Ramazan (Springer Science and Business Media LLC, 2012-04-01)
Exact bound state solutions and corresponding normalized eigenfunctions of the radial Schrodinger equation are studied for the pseudoharmonic and Mie-type potentials by using the Laplace transform approach. The analytical results are obtained and seen that they are the same with the ones obtained before. The energy eigenvalues of the inverse square plus square potential and three-dimensional harmonic oscillator are given as special cases. It is shown the variation of the first six normalized wave-functions ...
LOCAL OPERATOR ALGEBRAS FRACTIONAL POSITIVITY AND THE QUANTUM MOMENT PROBLEM
Dosi, Anar (American Mathematical Society (AMS), 2011-02-01)
In the present paper we introduce quantum measures as a concept of quantum functional analysis and develop the fractional space technique in the quantum (or local operator) space framework. We prove that each local operator algebra (or quantum *-algebra) has a fractional space realization. This approach allows us to formulate and prove a noncommutative Albrecht-Vasilescu extension theorem, which in turn solves the quantum moment problem.
Shape-invariance approach and Hamiltonian hierarchy method on the Woods-Saxon potential for l not equal 0 states
Berkdemir, Cueneyt; BERKDEMİR, Ayşe; Sever, Ramazan (Springer Science and Business Media LLC, 2008-03-01)
An analytically solvable Woods-Saxon potential for l not equal 0 states is presented within the framework of Supersymmetric Quantum Mechanics formalism. The shape-invariance approach and Hamiltonian hierarchy method are included in calculations by means of a translation of parameters. The approximate energy spectrum of this potential is obtained for l not equal 0 states, applying the Woods-Saxon square approximation to the centrifugal barrier term of the Schrodinger equation.
Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules
IKHDAİR, SAMEER; Sever, Ramazan (Springer Science and Business Media LLC, 2009-04-01)
For arbitrary values of n and l quantum numbers, we present a simple exact analytical solution of the D-dimensional (D a parts per thousand yen 2) hyperradial Schrodinger equation with the Kratzer and the modified Kratzer potentials within the framework of the exact quantization rule (EQR) method. The exact bound state energy eigenvalues (E (nl) ) are easily calculated from this EQR method. The corresponding normalized hyperradial wave functions (psi (nl) (r)) are also calculated. The exact energy eigenvalu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Yesiltas and R. Sever, “Exponential type complex and non-Hermitian potentials within quantum Hamilton-Jacobi formalism,”
JOURNAL OF MATHEMATICAL CHEMISTRY
, pp. 921–931, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62562.