The Dirac-Yukawa problem in view of pseudospin symmetry

2011-08-01
AYDOĞDU, OKTAY
Sever, Ramazan
An approximate analytical solution of the Dirac equation for the Yukawa potential under the pseudospin symmetry condition is obtained using the asymptotic iteration method. We discover the energy eigenvalue equation and some of the numerical results are listed. Wave functions are obtained in terms of hypergeometric functions. Extra degeneracies are removed by adding a new term, A/r(2), to the Yukawa potential. The effects of tensor interaction on the two states in the pseudospin doublet are also investigated.

Suggestions

An algebraic method for the analytical solutions of the Klein-Gordon equation for any angular momentum for some diatomic potentials
Akçay, Hüseyin; Sever, Ramazan (IOP Publishing, 2014-01-01)
Analytical solutions of the Klein-Gordon equation are obtained by reducing the radial part of the wave equation to a standard form of a second-order differential equation. Differential equations of this standard form are solvable in terms of hypergeometric functions and we give an algebraic formulation for the bound state wave functions and for the energy eigenvalues. This formulation is applied for the solutions of the Klein-Gordon equation with some diatomic potentials.
THE NONLINEAR COLD PLASMA-BUNCHED BEAM INTERACTION AND THE PLASMA WAKEFIELD ACCELERATOR CASE
BILIKMEN, S; NAZIH, RM (IOP Publishing, 1993-02-01)
In this paper, a nonlinear analytical solution for a cold plasma-bunched beam system based on the Hamiltonian formalism where alpha = n(b)/n0 and beta(phi) = upsilon(phi)/c have been taken as parameters matching between zero and unity is given. The oscillation limiting energies, frequencies and transformer ratios have been carried out in general for both the one-dimensional and the case where a small transverse component of motion is included. The plasma wakefield accelerator has been treated as a special c...
Covariant Bethe-Salpeter equation for heavy Q(Q)over-bar bound states
Zakout, I; Sever, Ramazan (IOP Publishing, 1997-02-01)
We investigate a numerical solution of the covariant Bethe-Salpeter equation in the Euclidean space for heavy meson with gluon ladder in the Landau gauge and scalar confinement. A new approach is presented to solve the non-linear eigenvalue problem with suitable bases and fictitious eigenvalue parameters. We obtain unphysical states when the equation is solved for timelike spectra. We also present how to cover the singularity of a free quark propagator and Schwinger-Dyson equation when extrapolated to the ...
Approximate analytical solutions of the Klein-Gordon equation for the Hulthen potential with the position-dependent mass
Arda, Altug; Sever, Ramazan; TEZCAN, CEVDET (IOP Publishing, 2009-01-01)
The Klein-Gordon equation is solved approximately for the Hulthen potential for any angular momentum quantum number l with the position-dependent mass. Solutions are obtained by reducing the Klein-Gordon equation into a Schrodinger-like differential equation using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get energy eigenvalues and the wavefunctions. It is found that the results in the case of constant mass are in good agreement with the ones obtain...
Any l-state improved quasi-exact analytical solutions of the spatially dependent mass Klein-Gordon equation for the scalar and vector Hulthen potentials
IKHDAİR, SAMEER; Sever, Ramazan (IOP Publishing, 2009-03-01)
We present a new approximation scheme for the centrifugal term to obtain a quasi-exact analytical bound state solution within the framework of the position-dependent effective mass radial Klein-Gordon equation with the scalar and vector Hulthen potentials in any arbitrary D dimension and orbital angular momentum quantum numbers l. The Nikiforov-Uvarov (NU) method is used in the calculations. The relativistic real energy levels and corresponding eigenfunctions for the bound states with different screening pa...
Citation Formats
O. AYDOĞDU and R. Sever, “The Dirac-Yukawa problem in view of pseudospin symmetry,” PHYSICA SCRIPTA, pp. 0–0, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62619.