EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH

Download
2012-09-28
Arda, Altug
Sever, Ramazan
Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different parameter values.
MODERN PHYSICS LETTERS A

Suggestions

Exact polynomial eigensolutions of the Schrodinger equation for the pseudoharmonic potential
Ikhdair, Sameer; Sever, Ramazan (2007-03-31)
The polynomial solution of the Schrodinger equation for the Pseudoharmonic potential is found for any arbitrary angular momentum l. The exact bound-state energy eigenvalues and the corresponding eigenfunctions are analytically calculated. The energy states for several diatomic molecular systems are calculated numerically for various principal and angular quantum numbers. By a proper transformation, this problem is also solved very simply by using the known eigensolutions of anharmonic oscillator potential.
Exact Solutions of Some Partial Differential Equations Using the Modified Differential Transform Method
Cansu Kurt, Ümmügülsüm; Ozkan, Ozan (2018-03-01)
In this paper, we present the modification of the differential transform method by using Laplace transform and Pade approximation to obtain closed form solutions of linear and nonlinear partial differential equations. Some illustrative examples are given to demonstrate the activeness of the proposed technique. The obtained results ensure that this modified method is capable of solving a large number of linear and nonlinear PDEs that have wide application in science and engineering. It solves the drawbacks i...
Approximate Solutions of Dirac Equation with Hyperbolic-Type Potential
Arda, Altug; Sever, Ramazan (2015-09-01)
The energy eigenvalues of a Dirac particle for the hyperbolic-type potential field have been computed approximately. It is obtained a transcendental function of energy, F(E), by writing in terms of confluent Heun functions. The numerical values of energy are then obtained by fixing the zeros on "E-axis" for both complex functions Re[F(E)] and Im[F(E)].
Approximate analytical solutions of a two-term diatomic molecular potential with centrifugal barrier
Arda, Altug; Sever, Ramazan (2012-08-01)
Approximate analytical bound state solutions of the radial Schrodinger equation are studied for a two-term diatomic molecular potential in terms of the hypergeometric functions for the cases where q >= 1 and q = 0. The energy eigenvalues and the corresponding normalized wave functions of the Manning-Rosen potential, the 'standard' Hulthen potential and the generalized Morse potential are briefly studied as special cases. It is observed that our analytical results are the same with the ones obtained before.
Exact solutions of the Schrodinger equation via Laplace transform approach: pseudoharmonic potential and Mie-type potentials
Arda, Altug; Sever, Ramazan (Springer Science and Business Media LLC, 2012-04-01)
Exact bound state solutions and corresponding normalized eigenfunctions of the radial Schrodinger equation are studied for the pseudoharmonic and Mie-type potentials by using the Laplace transform approach. The analytical results are obtained and seen that they are the same with the ones obtained before. The energy eigenvalues of the inverse square plus square potential and three-dimensional harmonic oscillator are given as special cases. It is shown the variation of the first six normalized wave-functions ...
Citation Formats
A. Arda and R. Sever, “EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH,” MODERN PHYSICS LETTERS A, pp. 0–0, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62622.