Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Exact solution of Schrodinger equation with deformed ring-shaped potential
Download
index.pdf
Date
2005-01-01
Author
Aktas, M
Sever, Ramazan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
204
views
72
downloads
Cite This
Exact solution of the Schrodinger equation with deformed ring-shaped potential is obtained in the parabolic and spherical coordinates. The Nikiforov-Uvarov method is used in the solution. Eigenfunctions and corresponding energy eigenvalues are calculated analytically. The agreement of our results is good.
Subject Keywords
Deformed ring-shaped potential
,
The Nikiforov-Uvarov method
URI
https://hdl.handle.net/11511/62687
Journal
JOURNAL OF MATHEMATICAL CHEMISTRY
DOI
https://doi.org/10.1007/s10910-004-1446-8
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Exact solution of Schrodinger equation for Pseudoharmonic potential
Sever, Ramazan; TEZCAN, CEVDET; Aktas, Metin; Yesiltas, Oezlem (2008-02-01)
Exact solution of Schrodinger equation for the pseudoharmonic potential is obtained for an arbitrary angular momentum. The energy eigenvalues and corresponding eigenfunctions are calculated by Nikiforov-Uvarov method. Wavefunctions are expressed in terms of Jacobi polynomials. The energy eigenvalues are calculated numerically for some values of l and n with n <= 5 for some diatomic molecules.
Exact polynomial eigensolutions of the Schrodinger equation for the pseudoharmonic potential
Ikhdair, Sameer; Sever, Ramazan (2007-03-31)
The polynomial solution of the Schrodinger equation for the Pseudoharmonic potential is found for any arbitrary angular momentum l. The exact bound-state energy eigenvalues and the corresponding eigenfunctions are analytically calculated. The energy states for several diatomic molecular systems are calculated numerically for various principal and angular quantum numbers. By a proper transformation, this problem is also solved very simply by using the known eigensolutions of anharmonic oscillator potential.
Exact solutions of the radial Schrodinger equation for some physical potentials
IKHDAİR, SAMEER; Sever, Ramazan (2007-12-01)
By using an ansatz for the eigenfunction, we have obtained the exact analytical solutions of the radial Schrodinger equation for the pseudoharmonic and the Kratzer potentials in two dimensions. The bound-state solutions are easily calculated from this eigenfunction ansatz. The corresponding normalized wavefunctions are also obtained. (C) Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.
Exact solution of effective mass Schrodinger equation for the Hulthen potential
Sever, Ramazan; TEZCAN, CEVDET; Yesiltas, Oezlem; Bucurgat, Mahmut (2008-09-01)
A general form of the effective mass Schrodinger equation is solved exactly for Hulthen potential. Nikiforov-Uvarov method is used to obtain energy eigenvalues and the corresponding wave functions. A free parameter is used in the transformation of the wave function.
Approximate eigenvalue and eigenfunction solutions for the generalized Hulthen potential with any angular momentum
Ikhdair, Sameer M.; Sever, Ramazan (2007-10-01)
An approximate solution of the Schrodinger equation for the generalized Hulthen potential with non-zero angular quantum number is solved. The bound state energy eigenvalues and eigenfunctions are obtained in terms of Jacobi polynomials. The Nikiforov-Uvarov method is used in the computations. We have considered the time-independent Schrodinger equation with the associated form of Hulthen potential which simulate the effect of the centrifugal barrier for any l-state. The energy levels of the used Hulthen pot...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Aktas and R. Sever, “Exact solution of Schrodinger equation with deformed ring-shaped potential,”
JOURNAL OF MATHEMATICAL CHEMISTRY
, pp. 139–148, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62687.