A Model for Vertical-to-Horizontal Response Spectral Ratios for Europe and the Middle East

Download
2011-08-01
Bommer, Julian J.
Akkar, Dede Sinan
Kale, Ozkan
In the framework of probabilistic seismic hazard analysis, the preferred approach for obtaining the response spectrum of the vertical component of motion is to scale the horizontal spectrum by vertical-to-horizontal (V/H) spectral ratios. In order to apply these ratios to scenario or conditional mean spectra, the V/H ratios need to be defined as a function of variables such as magnitude, distance, and site classification. A new model for the prediction of V/H ratios for peak ground acceleration and spectral accelerations from 0.02 to 3.0 s is developed from the database of strong-motion accelerograms from Europe and the Middle East. A simple functional form, expressing the V/H ratios as a function of magnitude, style of faulting, distance, and site class, is found to be appropriate, and the associated aleatory variability is found to be at least as low as that obtained in other studies using more complex models. The predicted ratios from the new European model are found to be in broad agreement with recent models derived from predominantly western North America data.
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA

Suggestions

A short cut numerical method for determination of periods of free oscillations for basins with irregular geometry and bathymetry
Yalçıner, Ahmet Cevdet (Elsevier BV, 2007-04-01)
A short cut numerical method for evaluation of the modes of free oscillations of the basins which have irregular geometry and bathymetry is presented in this paper. In the method, a single wave is inputted to the basin as an initial impulse. The respective agitation in the basin is computed by using the numerical method solving the nonlinear form of long wave equations. The time histories of water surface fluctuations at different locations due to propagation of the waves in relation to the initial impulse ...
A Numerical Simulation of non-uniform Magnetic Field Effect on Ferrofluid Flow in a Half-Annulus Enclosure with Sinusoidal Hot Wall
Oglakkaya, F. S.; Bozkaya, Canan (2016-09-25)
In this study, the problem of two-dimensional, laminar ferrofluid flow in a semi-annulus enclosure with sinusoidal hot wall is investigated numerically by using the dual reciprocity boundary element method. The flow is under the influence of a nodal magnetic source placed below the mid of the sinusoidal inner wall. The equations governing the present problem are obtained under the principles of ferrohydrodynamics and magnetohydrodynamics. The numerical computations are performed for various values of Raylei...
A new differential formulation of acoustic scattering by rotationally symmetrical penetrable scatterers
Günalp, Nilgün; TOSUN, H (1994-07-01)
A new differential formulation is presented for acoustic wave scattering from rotationally symmetric penetrable bodies. The numerical implementation of this formulation is fairly simple, and comprises basically the construction of the state-transition matrix of a system of differential equations and the solution of a matrix equation. The validity and the accuracy of the numerical scheme are tested considering objects of known scattering behavior. Other numerical applications are also presented to demonstrat...
AN ESTIMATION OF THE MAXIMUM INTERSTORY DRIFT RATIO FOR SHEAR-WALL TYPE STRUCTURES
Koleva, G.; Sandu, I.; Akkar, S. (2008-05-20)
In displacement-based engineering, the maximum interstory drift ratio (MIDR) is one of the most influential parameters for evaluating the seismic performance of existing structural systems. MIDR is also a key parameter in force-based designs satisfying serviceability lit-nits for new structural systems. A set of predictive equations is derived for estimating MIDR on shear-wall systems with fundamental periods ranging from 0.5 to 1.25 s. The equations are derived from a recently compiled ground-motion datase...
A METHOD FOR THE CALCULATION OF NATURAL FREQUENCIES OF ORTHOTROPIC AXISYMMETRICALLY LOADED SHELLS OF REVOLUTION
Kayran, Altan; ARDIC, ES (ASME International, 1994-01-01)
A methodology is presented for the calculation of the natural frequencies of orthotropic axisymmetrically loaded shells of revolution including the effect of transverse shear deformation. The fundamental system of equations governing the free vibration of the stress-free shells of revolution are modified such that the initial stresses due to the axisymmetric loading are incorporated into the analysis. The linear equations on the vibration about the deformed state are solved by using the transfer matrix meth...
Citation Formats
J. J. Bommer, D. S. Akkar, and O. Kale, “A Model for Vertical-to-Horizontal Response Spectral Ratios for Europe and the Middle East,” BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, pp. 1783–1806, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62722.