Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Shape recognition with generalized beam angle statistics
Download
index.pdf
Date
2004-04-30
Author
Tola, OO
Arica, N
Yarman Vural, Fatoş Tunay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
192
views
109
downloads
Cite This
In this study, we develop a new shape descriptor and matching algorithm in order to find a given template shape in an edge detected image without performing boundary extraction. The shape descriptor based on Generalized Beam Angle Statistics (GBAS) defines the angles between the lines connecting each boundary point with the rest of the points, as random variable. Then, it assigns a feature vector to each point using the moments of beam angles. The proposed matching algorithm performs shape recognition by matching the feature vectors of boundary points on the template shape and the edge pixels on the image. The matching process also considers the spatial distance of the edge pixels. The experiments performed on MPEG-7 data set show that the template shapes are found succesfully on the noisy images.
Subject Keywords
Virtual colonoscopy
,
Noise shaping
,
Pixel
,
Image recognition
,
Random variables
,
Joining processes
,
Image edge detection
,
MPEG 7 Standard
,
Statistics
,
Shape
URI
https://hdl.handle.net/11511/62726
DOI
https://doi.org/10.1109/siu.2004.1338636
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Shape recognition with generalized beam angle statistics
Tola, OO; Arica, N; Yarman-Vural, F (2004-01-01)
In this study, we develop a new shape descriptor and a matching algorithm in order to find a given template shape in an edge detected image without extracting the boundary. The shape descriptor based on Generalized Beam Angle Statistics (GBAS) defines the angles between the lines connecting each boundary point with the rest of the points, as random variable. Then, it assigns a feature vector to each point using the moments of beam angles. The proposed matching algorithm performs shape recognition by matchin...
Image Annotation With Semi-Supervised Clustering
Sayar, Ahmet; Yarman Vural, Fatoş Tunay (2009-09-16)
Methods developed for image annotation usually make use of region clustering algorithms. Visual codebooks are generated from the region clusters of low level features. These codebooks are then, matched with the words of the text document related to the image, in various ways. In this paper, we supervise the clustering process by using three types of side information. The first one is the topic probability information obtained from the text document associated with the image. The second is the orientation an...
Topological Navigation Algorithm Design and Analysis Using Spherical Images
Şahin, Yasin; Koku, Ahmet Buğra; Department of Mechanical Engineering (2022-8-23)
A topological navigation algorithm that has the capability of mapping and localization based on visual contents is proposed. Keypoint detection and feature matching are conducted on spherical images to extract significant features among sequential frames. Robot movement direction is estimated based on historical angle differences of significant features to reach the final destination. The navigation process is supported with visual egocentric localization to gain simultaneous localization and mapping compet...
Coarse-to-Fine Isometric Shape Correspondence by Tracking Symmetric Flips
Sahillioğlu, Yusuf; Yemez, Y. (2013-02-01)
We address the symmetric flip problem that is inherent to multi-resolution isometric shape matching algorithms. To this effect, we extend our previous work which handles the dense isometric correspondence problem in the original 3D Euclidean space via coarse-to-fine combinatorial matching. The key idea is based on keeping track of all optimal solutions, which may be more than one due to symmetry especially at coarse levels, throughout denser levels of the shape matching process. We compare the resulting den...
3D object representation using transform and scale invariant 3D features
AKAGÜNDÜZ, Erdem; Ulusoy, İlkay (2007-10-21)
An algorithm is proposed for 3D object representation using generic 3D features which are transformation and scale invariant. Descriptive 3D features and their relations are used to construct a graphical model for the object which is later trained and then used for detection purposes. Descriptive 3D features are the fundamental structures which are extracted from the surface of the 3D scanner output. This surface is described by mean and Gaussian curvature values at every data point at various scales and a ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Tola, N. Arica, and F. T. Yarman Vural, “Shape recognition with generalized beam angle statistics,” 2004, p. 735, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62726.