Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Bound state solution of the Schrodinger equation for Mie potential
Download
index.pdf
Date
2008-02-01
Author
Sever, Ramazan
Bucurgat, Mahmut
TEZCAN, CEVDET
Yesiltas, Oezlem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
266
views
62
downloads
Cite This
Exact solution of Schrodinger equation for the Mie potential is obtained for an arbitrary angular momentum. The energy eigenvalues and the corresponding wavefunctions are calculated by the use of the Nikiforov-Uvarov method. Wavefunctions are expressed in terms of Jacobi polynomials. The bound states are calculated numerically for some values of l and n with n <= 5. They are applied to several diatomic molecules.
Subject Keywords
Applied Mathematics
,
General Chemistry
URI
https://hdl.handle.net/11511/62929
Journal
JOURNAL OF MATHEMATICAL CHEMISTRY
DOI
https://doi.org/10.1007/s10910-007-9228-8
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Bound states of a more general exponential screened Coulomb potential
Ikhdair, Sameer M.; Sever, Ramazan (Springer Science and Business Media LLC, 2007-05-01)
An alternative approximation scheme has been used in solving the Schrodinger equation to the more general case of exponential screened Coulomb potential, V(r) = -(a/r)[1 + (1 + br)e(-2br)]. The bound state energies of the 1s, 2s and 3s-states, together with the ground state wave function are obtained analytically upto the second perturbation term.
Bound energy for the exponential-cosine-screened Coulomb potential
Ikhdair, Sameer M.; Sever, Ramazan (Springer Science and Business Media LLC, 2007-05-01)
An alternative approximation scheme has been used in solving the Schrodinger equation for the exponential-cosine-screened Coulomb potential. The bound state energies for various eigenstates and the corresponding wave functions are obtained analytically up to the second perturbation term.
Exact solutions of the Schrodinger equation via Laplace transform approach: pseudoharmonic potential and Mie-type potentials
Arda, Altug; Sever, Ramazan (Springer Science and Business Media LLC, 2012-04-01)
Exact bound state solutions and corresponding normalized eigenfunctions of the radial Schrodinger equation are studied for the pseudoharmonic and Mie-type potentials by using the Laplace transform approach. The analytical results are obtained and seen that they are the same with the ones obtained before. The energy eigenvalues of the inverse square plus square potential and three-dimensional harmonic oscillator are given as special cases. It is shown the variation of the first six normalized wave-functions ...
Shape-invariance approach and Hamiltonian hierarchy method on the Woods-Saxon potential for l not equal 0 states
Berkdemir, Cueneyt; BERKDEMİR, Ayşe; Sever, Ramazan (Springer Science and Business Media LLC, 2008-03-01)
An analytically solvable Woods-Saxon potential for l not equal 0 states is presented within the framework of Supersymmetric Quantum Mechanics formalism. The shape-invariance approach and Hamiltonian hierarchy method are included in calculations by means of a translation of parameters. The approximate energy spectrum of this potential is obtained for l not equal 0 states, applying the Woods-Saxon square approximation to the centrifugal barrier term of the Schrodinger equation.
Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules
IKHDAİR, SAMEER; Sever, Ramazan (Springer Science and Business Media LLC, 2009-04-01)
For arbitrary values of n and l quantum numbers, we present a simple exact analytical solution of the D-dimensional (D a parts per thousand yen 2) hyperradial Schrodinger equation with the Kratzer and the modified Kratzer potentials within the framework of the exact quantization rule (EQR) method. The exact bound state energy eigenvalues (E (nl) ) are easily calculated from this EQR method. The corresponding normalized hyperradial wave functions (psi (nl) (r)) are also calculated. The exact energy eigenvalu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Sever, M. Bucurgat, C. TEZCAN, and O. Yesiltas, “Bound state solution of the Schrodinger equation for Mie potential,”
JOURNAL OF MATHEMATICAL CHEMISTRY
, pp. 749–755, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62929.