Steady-state bipartite entanglement supported by a squeezed environment

Can, MA
Akir, O
Gunhan, AC
Klyachko, AA
Pak, Namık Kemal
Shumovsky, AS
We examine the entanglement of two atoms induced by an external quantum system. Both two-level atoms are coupled to a third two-level system by dipole interaction, and the third system is under the influence of a certain environment. We examine different types of environments and show that the steady-state bipartite entanglement can be achieved. We show that a strongly fluctuating environment is more preferable because the transmission of quantum fluctuations to the atomic system creates and supports steady-state entanglement with a higher amount of concurrence than a nonfluctuating environment or an environment with strong classical fluctuations.


Magnetic Moments of 70-Plet Baryons in Quark Model and QCD Sum Rules
Alıyev, Tahmasıb (2015-01-01)
Magnetic moments of the positive parity 70-plet baryons are estimated in the framework of the nonrelativistic quark model and QCD sum rules method. It is found that the magnetic moments of the 70-plet baryons can be expressed in terms of the F and D couplings and exhibit unitary symmetry. The QCD sum rules for the magnetic moments of the 70-plet octet baryons are formulated. A comparison of our results on magnetic moments of 56-plet and 70-plet baryons predicted from QCD sum rules is presented.
Pulse phase resolved x-ray spectroscopy of four accretion powered millisecond pulsars
Çolak, Sıdıka Merve; Baykal, Altan; Department of Physics (2014)
In this thesis, pulse phase resolved X-ray spectroscopy of four accretion powered millisecond pulsars which are IGR J00291+5934 , IGR J17498-2921 , XTE J0929-314 and XTE J1807-294 will be presented. Phase dependent changes during their outbursts will be checked for possible correlations of spectral parameters such as photon index and blackbody temperature with rotation phase using archive of Rossi X-ray Timing Explorer (RXTE) observations. In the analysis of IGR J17498-2921 in 2011 outburst , positive corre...
Entangled Harmonic Oscillators and Space-Time Entanglement
Başkal, Sibel; Kim, Young S.; Noz, Marilyn E. (MDPI AG, 2016-6-28)
The mathematical basis for the Gaussian entanglement is discussed in detail, as well as its implications in the internal space-time structure of relativistic extended particles. It is shown that the Gaussian entanglement shares the same set of mathematical formulas with the harmonic oscillator in the Lorentz-covariant world. It is thus possible to transfer the concept of entanglement to the Lorentz-covariant picture of the bound state, which requires both space and time separations between two constituent p...
Witnessing pairing correlations in identical-particle systems
Aksak, Cagan; Turgut, Sadi (2021-12-01)
Quantum correlations and entanglement in identical-particle systems have been a puz-zling question which has attracted vast interest and widely different approaches. Witness formalism developed first for entanglement measurement can be adopted to other kind of correlations. An approach is introduced by Kraus et al., [Phys. Rev. A 79, 012306 (2009)] based on pairing correlations in fermionic systems and the use of witness formalism to detect pairing. In this contribution, a two-particle-annihilation operator...
Hyperbolic metamaterials and massive Klein-Gordon equation in (2+1)-dimensional de Sitter spacetime
Tekin, Bayram (2021-11-01)
The wave equation obeyed by the extraordinary component of the electric field in a hyperbolic metamaterial was shown to be a massless Klein-Gordon field living in a flat spacetime with two timelike and two spacelike dimensions. Such a wave equation, unexpectedly, allows dispersionless propagation albeit having two spatial dimensions. Here we show that the same equation can be naturally interpreted as a particular massive Klein-Gordon equation with the usual one timelike and two spacelike dimensions in a de ...
Citation Formats
M. Can, O. Akir, A. Gunhan, A. Klyachko, N. K. Pak, and A. Shumovsky, “Steady-state bipartite entanglement supported by a squeezed environment,” LASER PHYSICS, pp. 751–753, 2005, Accessed: 00, 2020. [Online]. Available: