The integration and engineering of the ATLAS SemiConductor Tracker Barrel

Download
2008-10-01
Abdesselam, A.
Allport, P. P.
Anastopoulos, C.
Anderson, B.
Andricek, L.
Anghinolfi, F.
Apsimon, R.
Atkinson, T.
Attree, D. J.
Austin, N.
Bangert, A.
Barbier, G.
Barclay, P.
Barr, A. J.
Batchelor, L. E.
Bates, R. L.
Batley, J. R.
Beck, G. A.
Bell, P. J.
Bell, W. H.
Belymam, A.
Benes, J.
Benes, P.
Bernabeu, J.
Bethke, S.
Bizzell, J. P.
Blocki, J.
Bohm, J.
Booth, C. N.
Bouhova-Thacker, E. V.
Brandt, O.
Brodbeck, T. J.
Broklova, Z.
Broz, J.
de Renstrom, P. A. Bruckman
Burdin, S.
Buttar, C. M.
Butterworth, J. M.
Capocci, E.
Carpentieri, C.
Carter, A. A.
Carter, J. R.
Catinaccio, A.
Catmore, J. R.
Ilatas, M. Chamizo
Charlton, D. G.
Cheplakov, A.
Chilingarov, A.
Chouridou, S.
Chren, D.
Chu, M. L.
Cindro, V.
Ciocio, A.
Civera, J. V.
Clark, A.
Colijn, A. P.
Costa, M. J.
Costanzo, D.
Cox, J.
Dabinett, C.
Dabrowski, W.
Dalmau, J.
Danielsen, K. M.
D'Auria, S.
Dawson, I.
de Jong, P.
Dehchar, M. D.
Demirköz, Melahat Bilge
Dervan, P.
Cornell, S. Diez
Dixon, S. D.
Dobson, E.
Dolezal, Z.
Donega, M.
D'Onofrio, M.
Dorholt, O.
Doubrava, M.
Dowell, J. D.
Drasal, Z.
Duerdoth, I. P.
Duxfield, R.
Dwuznik, M.
Eckert, S.
Eklund, L. M.
Ely, R.
Escobar, C.
Fadeyev, V.
Fasching, D.
Fawzi, F.
Feld, L.
Ferguson, D.
Ferrari, P.
Ferrere, D.
Fopma, J.
Ford, P.
Fortin, R.
Foster, J. M.
Fox, H.
Fraser, T. J.
Freestone, J.
French, R. S.
Fuster, J.
Gadomski, S.
Gallop, B. J.
Galuska, M.
Gannaway, F. C.
Garcia, C.
Navarro, J. E. Garcia
Ghodbane, N.
Gibson, M. D.
Gibson, S. M.
Goettfert, T.
Gonzalez, S.
Gonzalez-Sevilla, S.
Goodrick, M. J.
Gorfine, G.
Gorisek, A.
Gornicki, E.
Greenall, A.
Greenfield, D.
Grillo, A. A.
Grosse-Knetter, J.
Haber, C.
Haertel, R.
Hanagaki, K.
Hansl-Kozanecka, T.
Hara, K.
Harris, M.
Hartjes, F. G.
Hauff, D.
Hawes, B. M.
Hayler, T.
Haywood, S. J.
Heinemann, F. E. W.
Henderson, R. C. W.
Hessey, N. P.
Hicheur, A.
Hill, J. C.
Hodgkinson, M. C.
Hodgson, P.
Hollins, T. I.
Holmes, A.
Holt, R.
Holy, T.
Horazdovsky, T.
Hou, S.
Howell, D. F.
Hughes, G.
Huse, T.
Ibbotson, M.
Ikegami, Y.
Issever, C.
Jakobs, K.
Jakubek, J.
Jared, R. C.
Jarron, P.
Johansen, L. G.
Johansson, P.
Jones, A.
Jones, M.
Jones, R. W. L.
Jones, T. J.
Jones, T. W.
Joos, D.
Joseph, J.
Jovanovic, P.
Jusko, J.
Jusko, O.
Kaplon, J.
Unel, M. Karagoz
Kartvelishvili, V.
Kerschen, N.
Ketterer, C.
Kholodenko, A. G.
Kim, S. H.
Kluth, S.
Kodys, P.
Koffeman, E.
Kohout, Z.
Kohriki, T.
Kondo, T.
Koperny, S.
Koukol, V.
Kral, V.
Kramberger, G.
Kubik, P.
Kundu, N.
Lacasta, C.
Lacuesta, V. R.
Lau, W.
Lee, S. -C.
Lefevre, R. P.
Leney, K. J. C.
Lester, C. G.
Liang, Z.
Limper, M.
Lindsay, S. W.
Linhart, V.
Lintern, A. J.
Llacer, G. Llosa
Lockett, C.
Loebinger, F. K.
Fantoba, M. Lozano
Ludwig, I.
Ludwig, J.
Lutz, G.
Lynn, J.
Maassen, M.
Macina, D.
Macpherson, A.
Macwaters, C.
Magrath, C. A.
Malecki, P.
Mandic, I.
Mangin-Brinet, M.
Marti i Garcia, S.
Martinez-McKinney, G. F.
Maruyama, T.
Matheson, J.
McMahon, S. J.
McMahon, T. J.
Meinhardt, J.
Garcia, B. R. Mellado
Messmer, I.
Mikulec, B.
Mikuz, M.
Mima, S.
Minano, M.
Mistry, J.
Mitsou, V. A.
Modesto, P.
Moed, S.
Mohn, B.
Valls, R. M. Moles
Moorhead, G. F.
Morin, J.
Morley, A. K.
Morone, M-C.
Morris, J.
Morrissey, M. C.
Moser, H. G.
Moszczynski, A.
Muijs, A. J. M.
Murray, W. J.
Nagai, K.
Nagai, Y.
Naito, D.
Nakamura, K.
Nakano, I.
Nelson, C.
Nichols, A.
Nicholson, R.
Nickerson, R. B.
Nisius, R.
Olcese, M.
Gomez, M. Olivo
O'Shea, V.
Ottewell, B.
Oye, O.
Paganis, E.
Palmer, M. J.
Parker, M. A.
Parzefall, U.
Pataraia, S.
Pater, J. R.
Pellegrini, G.
Pernegger, H.
Perrin, E.
Phillips, A. W.
Phillips, P. W.
Poltorak, K.
Pospisil, S.
Pritchard, T.
Prokofiev, K.
Ratoff, P. N.
Reznicek, P.
Riadovikov, V. N.
Richter, R. H.
Robichaud-Veronneau, A.
Robinson, D.
Roe, S.
Runge, K.
Sadrozinski, H. F.
Sanchez, J.
Sandaker, H.
Santander, J.
Scheirich, D.
Schieck, J.
Sedlak, K.
Seiden, A.
Sfyrla, A.
Slavicek, T.
Sloan, T. J.
Smith, B.
Smizanska, M.
Snow, S. W.
Solar, M.
Solberg, A. O.
Sopko, B.
Sopko, V.
Suay, L. Sospedra
Spencer, E.
Spieler, H.
Stanecka, E.
Stapnes, S.
Stastny, J.
Stekl, I.
Stodulski, M.
Stradling, A.
Stugu, B.
Sutcliffe, P.
Szczygiel, R. R.
Takashima, R.
Tanaka, R.
Tappern, G. J.
Tarrant, J.
Taylor, G. N.
Teng, P. K.
Terada, S.
Thompson, R. J.
Titov, M.
Tovey, D. R.
Tovey, S. N.
Tricoli, A.
Turala, M.
Tyndel, M.
Ukegawa, F.
Comes, M. Ullan
Unno, Y.
Vacek, V.
Valkar, S.
Van der Kraaij, E.
Vickey, T.
Viehhauser, G. H. A.
Villani, E. G.
Vorobiev, A. P.
Vossebeld, J. H.
Vrba, V.
Anh, T. Vu
Wallny, R. S.
Ward, C. P.
Wastie, R.
Webb, P.
Webel, M.
Weber, M.
Weidberg, A. R.
Weilhammer, P. M.
Weiser, C.
Wells, P. S.
Werneke, P.
White, M. J.
Wiesmann, M.
Wilhelm, I.
Wilmut, I.
Wilson, J. A.
Wolter, M. W.
Wu, S. L.
Zhu, H. Z.
Zsenei, A.
The ATLAS SemiConductor Tracker (SCT) was built in three sections: a barrel and two end-caps. This paper describes the design, construction and final integration of the barrel section. The barrel is constructed around four nested cylinders that provide a stable and accurate support structure for the 2112 silicon modules and their associated services. The emphasis of this paper is directed at the aspects of engineering design that turned a concept into a fully-functioning detector, as well as the integration and testing of large sub-sections of the final SCT barrel detector. The paper follows the chronology of the construction. The main steps of the assembly are described with the results of intermediate tests. The barrel service components were developed and fabricated in parallel so that a flow of detector modules, cooling loops, opto-harnesses and Frequency-Scanning-Interferometry (FSI) alignment structures could be assembled onto the four cylinders. Once finished, each cylinder was conveyed to the next site for the mounting of modules to form a complete single barrel. Extensive electrical and thermal function tests were carried out on the completed single barrels. In the next stage, the four single barrels and thermal enclosures were combined into the complete SCT barrel detector so that it could be integrated with the Transition Radiation Tracker (TRT) barrel to form the central part of the ATLAS inner detector. Finally, the completed SCT barrel was tested together with the TRT barrel in noise tests and using cosmic rays.
JOURNAL OF INSTRUMENTATION

Suggestions

The data acquisition and calibration system for the ATLAS Semiconductor Tracker
Abdesselam, A.; et. al. (IOP Publishing, 2008-01-01)
The SemiConductor Tracker (SCT) data acquisition (DAQ) system will calibrate, configure, and control the approximately six million front-end channels of the ATLAS silicon strip detector. It will provide a synchronized bunch-crossing clock to the front-end modules, communicate first-level triggers to the front-end chips, and transfer information about hit strips to the ATLAS high-level trigger system. The system has been used extensively for calibration and quality assurance during SCT barrel and endcap asse...
Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays
Chatrchyan, S.; et. al. (IOP Publishing, 2010-03-01)
The CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12 000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of...
The optical links of the ATLAS SemiConductor tracker
Wilson, J. A.; et. al. (IOP Publishing, 2007-09-01)
Optical links are used for the readout of the 4088 silicon microstrip modules that make up the SemiConductor Tracker of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The optical link requirements are reviewed, with particular emphasis on the very demanding environment at the LHC. The on-detector components have to operate in high radiation levels for 10 years, with no maintenance, and there are very strict requirements on power consumption, material and space. A novel concept for the packagi...
Alignment of the CMS tracker with LHC and cosmic ray data
Chatrchyan, S.; et. al. (IOP Publishing, 2014-06-01)
The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurem...
Commissioning and performance of the CMS silicon strip tracker with cosmic ray muons
Chatrchyan, S.; et. al. (IOP Publishing, 2010-03-01)
During autumn 2008, the Silicon Strip Tracker was operated with the full CMS experiment in a comprehensive test, in the presence of the 3.8 T magnetic field produced by the CMS superconducting solenoid. Cosmic ray muons were detected in the muon chambers and used to trigger the readout of all CMS sub-detectors. About 15 million events with a muon in the tracker were collected. The efficiency of hit and track reconstruction were measured to be higher than 99% and consistent with expectations from Monte Carlo...
Citation Formats
A. Abdesselam et al., “The integration and engineering of the ATLAS SemiConductor Tracker Barrel,” JOURNAL OF INSTRUMENTATION, pp. 0–0, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63158.