Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On the Occurrence of Perfect Squares Among Values of Certain Polynomial Products
Date
2016-06-01
Author
Gurel, Erhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
159
views
0
downloads
Cite This
We prove that the product of first n consecutive values of the polynomial P(k) = 4k(4) + 1 is a perfect square infinitely often whereas the product of first n consecutive values of the polynomial Q(k) = k(4) + 4 is a perfect square only for n = 2.
URI
https://hdl.handle.net/11511/63350
Journal
AMERICAN MATHEMATICAL MONTHLY
DOI
https://doi.org/10.4169/amer.math.monthly.123.6.597
Collections
Natural Sciences and Mathematics, Article
Suggestions
OpenMETU
Core
On the special values of monic polynomials of hypergeometric type
Taşeli, Hasan (Springer Science and Business Media LLC, 2008-01-01)
Special values of monic polynomials y(n)(s), with leading coefficients of unity, satisfying the equation of hypergeometric type
On the arithmetic exceptionality of polynomial mappings
Küçüksakallı, Ömer (2018-02-01)
In this note we prove that certain polynomial mappings P-g(k) (x) is an element of Z[x] in n-variables obtained from simple complex Lie algebras g of arbitrary rank n1, are exceptional.
On two applications of polynomials x^k-cx-d over finite fields and more
İrimağzı, Canberk; Özbudak, Ferruh (Springer, Cham, 2023-01-01)
For integers k∈[2,q−2] coprime to q−1 , we first bound the number of zeroes of the family of polynomials xk−cx−d∈Fq[x] where q=2n such that q−1 is a prime or q=3n such that (q−1)/2 is a prime. This gives us bounds on cross-correlation of a subfamily of Golomb Costas arrays. Next, we show that the zero set of xk−cx−d over Fq is a planar almost difference set in F∗q and hence for some set of pairs (c, d), they produce optical orthogonal codes with λ=1 . More generally, we give an algorithm to produ...
On the Polynomial Multiplication in Chebyshev Form
Akleylek, Sedat; Cenk, Murat; Özbudak, Ferruh (2012-04-01)
We give an efficient multiplication method for polynomials in Chebyshev form. This multiplication method is different from the previous ones. Theoretically, we show that the number of multiplications is at least as good as Karatsuba-based algorithm. Moreover, using the proposed method, we improve the number of additions slightly. We remark that our method works efficiently for any N and it is easy to implement. To the best of our knowledge, the proposed method has the best multiplication and addition comple...
On the arithmetic complexity of Strassen-like matrix multiplications
Cenk, Murat (2017-05-01)
The Strassen algorithm for multiplying 2 x 2 matrices requires seven multiplications and 18 additions. The recursive use of this algorithm for matrices of dimension n yields a total arithmetic complexity of (7n(2.81) - 6n(2)) for n = 2(k). Winograd showed that using seven multiplications for this kind of matrix multiplication is optimal. Therefore, any algorithm for multiplying 2 x 2 matrices with seven multiplications is called a Strassen-like algorithm. Winograd also discovered an additively optimal Stras...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Gurel, “On the Occurrence of Perfect Squares Among Values of Certain Polynomial Products,”
AMERICAN MATHEMATICAL MONTHLY
, pp. 597–599, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63350.