Evolution Of Rotating Low Mass Stars With Angular-Momentum Loss

1991-03-01
KIZILOGLU, N
The evolutionary behavior of rotating low mass stars has been investigated with angular momentum loss by the magnetic stellar wind through the pre-main sequence and on the zero age main sequence phases. As the stars contract toward the zero age main sequence, angular momentum is removed from the convective envelope under the assumption that initially only the convective envelope is spun down in low mass stars. It is obtained that most of the angular momentum loss occurs prior to reaching the zero age main sequence. By the time of 7 10(8) yr, rotating low mass stars spin down to below 10 km s-1 surface rotational velocities. Hyades cluster data (Stauffer & Hartmann 1986) show almost the same trend with the isochrone of 7 10(8) yr, obtained in the present study.
ASTRONOMY & ASTROPHYSICS

Suggestions

Dynamics of the neutron star interior
Alpar, MA (1996-10-11)
This lecture summarizes the basic ideas on the dynamics of rotating superfluids in neutron stars (Section 2), and discusses the application to pulsar glitch models (Section 3). In Section 4 the anomalous braking indices of glitching pulsars are shown to agree with the model developed for the interglitch behaviour of the Vela pulsar, indicating possible universality of the dynamics of large glitches. Energy dissipation in the neutron star interior is discussed in Section 5. For an excellent general review of...
Radial and nonradial oscillations in stars with gravitational potential perturbation
Özel, Nesibe; Civelek, Fevziye Rikkat; Department of Physics (2003)
In this study, the linear adiabatic radial and nonradial oscillations of evolutionary stellar model with 1.80M©, representing the star VI 162 Ori, has been investigated. The already working oscillation program with Cowling approximation, which ig nores the Eulerian perturbation in gravitational potential, has been modified to carry out the radial and nonradial linear adiabatic perturbations of stellar mod els using the Eulerian perturbation in gravitational potential. The new set of equations were solved wi...
Early pre-main sequence evolution of low mass stars
Kucuk, I; Kiziloglu, N; Civelek, R (1998-01-01)
Evolution of the gravitational contraction phase of stars having masses 0.3 < M/M. < 1.5 were studied along with deuterium burning. The equation of state developed by Mihalas et al. (1988) and OPAL opacity tables were used in our investigation. The theoretical time Lines were compared with observations.
Pre-Main-Sequence evolution of rotating low-mass stars
Kızıloğlu, Nilgün (Springer Science and Business Media LLC, 1989-4)
The evolutionary behaviour of rotating low-mass stars in the mass range 0.2 and 0.9M ⊙ has been investigated during the pre-Main-Sequence phase. The angular momentum is conserved locally in radiative regions and totally in convective regions, according to a predetermined angular velocity distribution depending on the structure of the star. As the stars contract toward the zero-age Main Sequence, they spin up under the assumption that the angular momentum is conserved during the evolution of the stars. When ...
Study of high-p(T) charged particle suppression in PbPb compared to pp collisions at root s(NN)=2.76 TeV
Chatrchyan, S.; et. al. (Springer Science and Business Media LLC, 2012-03-01)
The transverse momentum spectra of charged particles have been measured in pp and PbPb collisions at root s(NN) = 2.76 TeV by the CMS experiment at the LHC. In the transverse momentum range p(T) = 5-10 GeV/c, the charged particle yield in the most central PbPb collisions is suppressed by up to a factor of 7 compared to the pp yield scaled by the number of incoherent nucleon-nucleon collisions. At higher p(T), this suppression is significantly reduced, approaching roughly a factor of 2 for particles with p(T...
Citation Formats
N. KIZILOGLU, “Evolution Of Rotating Low Mass Stars With Angular-Momentum Loss,” ASTRONOMY & ASTROPHYSICS, pp. 405–411, 1991, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63419.