Inequalities for harmonic functions on spheroids and their applications

Zahariuta, V
Hadamard-type interpolational inequalities for norms of harmonic functions are studied for confocal prolate and oblate spheroids. It is shown that the optimal level domains in such inequalities may be non-spheroidal. Moreover, in contrary with the case of analytic functions, there is an unremovable gap between the corresponding optimal level domains for inner and outer versions of Hadamard-type inequalities for harmonic functions. These results are based on some special asymptotical formulas for associated Legendre functions P-n(m), Q(n)(m), when the ratio m/n tends to some number gamma is an element of [0, 1]. The case of spheroids is studied in the frame of the general theory of so-called Lh-functions and extremal Lh-functions (Lh-potentials) (developed earlier by the author), which serves the harmonic functions case much as the theory of plurisubharmonic and maximal plurisubharmonic functions (pluripotentials) (Lelong, Bremermann, Siciak, Zahariuta, Bedford-Taylor, Sadullayev et al.) does in the case of analytic functions of several variables.


On the influence of fixed point free nilpotent automorphism groups
Ercan, Gülin (2017-12-01)
A finite group FH is said to be Frobenius-like if it has a nontrivial nilpotent normal subgroup F with a nontrivial complement H such that for all nonidentity elements . Let FH be a Frobenius-like group with complement H of prime order such that is of prime order. Suppose that FH acts on a finite group G by automorphisms where in such a way that In the present paper we prove that the Fitting series of coincides with the intersections of with the Fitting series of G, and the nilpotent length of G exceeds the...
Value sets of bivariate Chebyshev maps over finite fields
Küçüksakallı, Ömer (2015-11-01)
We determine the cardinality of the value sets of bivariate Chebyshev maps over finite fields. We achieve this using the dynamical properties of these maps and the algebraic expressions of their fixed points in terms of roots of unity.
Non-commutative holomorphic functions in elements of a Lie algebra and the absolute basis problem
Dosi (Dosiev), A. A. (IOP Publishing, 2009-11-01)
We study the absolute basis problem in algebras of holomorphic functions in non-commuting variables generating a finite-dimensional nilpotent Lie algebra g. This is motivated by J. L. Taylor's programme of non-commutative holomorphic functional calculus in the Lie algebra framework.
Exact Solutions of Effective-Mass Dirac-Pauli Equation with an Electromagnetic Field
Arda, Altug; Sever, Ramazan (Springer Science and Business Media LLC, 2017-01-01)
The exact bound state solutions of the Dirac-Pauli equation are studied for an appropriate position-dependent mass function by using the Nikiforov-Uvarov method. For a central electric field having a shifted inverse linear term, all two kinds of solutions for bound states are obtained in closed forms.
Differential - Operator solutions for complex partial differential equations
Celebi, O; Sengul, S (1998-07-10)
The solutions of complex partial differential equations of order four are obtained by using polynomial differential operators. A correspondence principle is also derived for the solutions of two different differential equations, imposing conditions on the coefficients.
Citation Formats
V. Zahariuta, “Inequalities for harmonic functions on spheroids and their applications,” INDIANA UNIVERSITY MATHEMATICS JOURNAL, pp. 1047–1075, 2001, Accessed: 00, 2020. [Online]. Available: