A note on the minimal polynomial of the product of linear recurring sequences

Cakcak, E
Let F be a field of nonzero characteristic, with its algebraic closure, F. For positive integers a, b, let J(a, b) be the set of integers k, such that (x - 1)k is the minimal polynomial of the termwise product of linear recurring sequences sigma and tau in F ($) over bar, with minimal polynomials (x - 1)(a) and (x - 1)(b) respectively. This set plays a crucial role in the determination of the product of linear recurring sequences with arbitrary minimal polynomials. Here, we give an explicit formula to determine some of the elements of J(a, b), in the case of characteristic 2. We also give some clues for the extension to arbitrary characteristic. The method given here has produced a family of matrices which are themselves interesting.


Improved Three-Way Split Formulas for Binary Polynomial and Toeplitz Matrix Vector Products
Cenk, Murat; Hasan, M. Anwar (2013-07-01)
In this paper, we consider three-way split formulas for binary polynomial multiplication and Toeplitz matrix vector product (TMVP). We first recall the best known three-way split formulas for polynomial multiplication: the formulas with six recursive multiplications given by Sunar in a 2006 IEEE Transactions on Computers paper and the formula with five recursive multiplications proposed by Bernstein at CRYPTO 2009. Second, we propose a new set of three-way split formulas for polynomial multiplication that a...
A note on divisor class groups of degree zero of algebraic function fields over finite fields
Özbudak, Ferruh (Elsevier BV, 2003-01-01)
We give tight upper bounds on the number of degree one places of an algebraic function field over a finite field in terms of the exponent of a natural subgroup of the divisor class group of degree zero.. (C) 2002 Elsevier Science (USA). All rights reserved.
Additive polynomials and primitive roots over finite fields
Özbudak, Ferruh (2001-01-01)
We prove existence of primitive roots with a prescribed nonzero image using the arithmetic of algebraic function fields for a class of polynomials over sufficiently large finite fields.
A note on the products ((m+1)(2)+1)((m+2)(2)+1) ... (n(2)+1) and ((m+1)(3)+1)((m+2)(3)+1) ... (n(3)+1)
Gurel, Erhan (2016-05-01)
We prove that for any positive integer m there exists a positive real number N-m such that whenever the integer n >= m neither the product P-m(n) = ((m + 1)(2) + 1) ((m + 2)(2) + 1) ... (n(2) + 1) nor the product Q(m)(n) = ((m + 1)(3) + 1)((m + 2)(3) + 1) ... (n(3) + 1) is a square.
On multiplication in finite fields
Cenk, Murat; Özbudak, Ferruh (2010-04-01)
We present a method for multiplication in finite fields which gives multiplication algorithms with improved or best known bilinear complexities for certain finite fields. Our method generalizes some earlier methods and combines them with the recently introduced complexity notion (M) over cap (q)(l), which denotes the minimum number of multiplications needed in F-q in order to obtain the coefficients of the product of two arbitrary l-term polynomials modulo x(l) in F-q[x]. We study our method for the finite ...
Citation Formats
E. Cakcak, “A note on the minimal polynomial of the product of linear recurring sequences,” 1999, p. 57, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63786.