Tameness in Frechet spaces of analytic functions

Download
2016-01-01
Aytuna, Aydin
A Frechet space chi with a sequence {parallel to.parallel to k}(k=1)(infinity) of generating seminorms is called tame if there exists an increasing function sigma : N -> Nsuch that for every continuous linear operator T from chi into itself, there exist N-0 and C > 0 such that
STUDIA MATHEMATICA

Suggestions

Some finite-dimensional backward shift-invariant subspaces in the ball and a related factorization problem
Alpay, D; Kaptanoglu, HT (2000-12-15)
Beurling's theorem characterizes subspaces of the Hardy space invariant under the forward-shift operator in terms of inner functions. In this Note we consider the case where the ball replaces the open unit desk and the reproducing kernel Hilbert space with reproducing kernel 1/(1-Sigma (N)(1) a(j)w(j)*) replaces the Hardy space. We give explicit formulas which generalize Blaschke products in the case of spaces of finite codimension. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier...
A NOTE ON TRIANGULAR OPERATORS ON SMOOTH SEQUENCE SPACES
Uyanik, Elif; Yurdakul, Murat Hayrettin (2019-06-01)
For a scalar sequence (theta(n))(n is an element of N), let C be the matrix defined by c(n)(k) = theta(n-k+1) if n >= k, c(n)(k) = 0 if n < k. The map between Kothe spaces lambda(A) and lambda(B) is called a Cauchy Product map if it is determined by the triangular matrix C. In this note we introduced some necessary and sufficient conditions for a Cauchy Product map on a nuclear Kothe space lambda(A) to nuclear G(1) - space lambda(B) to be linear and continuous. Its transpose is also considered.
ON GENERALIZED LOCAL SYMMETRIES OF THE SO(2,1) INVARIANT NONLINEAR SIGMA-MODEL
BASKAL, S; ERIS, A; SATIR, A (1994-12-19)
The symmetries and associated conservation laws of the SO(2,1) invariant non-linear sigma model equations in 1+1 dimensions are investigated. An infinite family of generalized local symmetries is presented and the uniqueness of these solutions is discussed.
Frechet-Hilbert spaces and the property SCBS
Uyanik, Elif; Yurdakul, Murat Hayrettin (2018-01-01)
In this note, we obtain that all separable Frechet-Hilbert spaces have the property of smallness up to a complemented Banach subspace (SCBS). Djakov, Terzioglu, Yurdakul, and Zahariuta proved that a bounded perturbation of an automorphism on Frechet spaces with the SCBS property is stable up to a complemented Banach subspace. Considering Frechet-Hilbert spaces we show that the bounded perturbation of an automorphism on a separable Frechet-Hilbert space still takes place up to a complemented Hilbert subspace...
Factorization of unbounded operators on Kothe spaces
Terzioglou, T; Yurdakul, Murat Hayrettin; Zuhariuta, V (2004-01-01)
The main result is that the existence of an unbounded continuous linear operator T between Kothe spaces lambda(A) and lambda(C) which factors through a third Kothe space A(B) causes the existence of an unbounded continuous quasidiagonal operator from lambda(A) into lambda(C) factoring through lambda(B) as a product of two continuous quasidiagonal operators. This fact is a factorized analogue of the Dragilev theorem [3, 6, 7, 2] about the quasidiagonal characterization of the relation (lambda(A), lambda(B)) ...
Citation Formats
A. Aytuna, “Tameness in Frechet spaces of analytic functions,” STUDIA MATHEMATICA, pp. 243–266, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64121.