On-chip photonic transistor based on the spike synchronization in circuit QED

Download
2018-03-30
Gul, Yusuf
We consider the single photon transistor in coupled cavity system of resonators interacting with multilevel superconducting artificial atom simultaneously. Effective single mode transformation is used for the diagonalization of the Hamiltonian and impedance matching in terms of the normal modes. Storage and transmission of the incident field are described by the interactions between the cavities controlling the atomic transitions of lowest lying states. Rabi splitting of vacuum-induced multiphoton transitions is considered in input/output relations by the quadrature operators in the absence of the input field. Second-order coherence functions are employed to investigate the photon blockade and delocalization localization transitions of cavity fields. Spontaneous virtual photon conversion into real photons is investigated in localized and oscillating regimes. Reflection and transmission of cavity output fields are investigated in the presence of the multilevel transitions. Accumulation and firing of the reflected and transmitted fields are used to investigate the synchronization of the bunching spike train of transmitted field and population imbalance of cavity fields. In the presence of single photon gate field, gain enhancement is explained for transmitted regime.
INTERNATIONAL JOURNAL OF MODERN PHYSICS B

Suggestions

On-demand continuous-variable quantum entanglement source for integrated circuits
Günay, Mehmet; Das, Priyam; Yüce, Emre; Polat, Emre Ozan; Bek, Alpan; Taşgın, Mehmet Emre (2023-01-02)
Integration of devices generating non-classical states (such as entanglement) into photonic circuits is one of the major goals in achieving integrated quantum circuits (IQCs). This is demonstrated successfully in recent decades. Controlling the non-classicality generation in these micron-scale devices is also crucial for the robust operation of the IQCs. Here, we propose a micron-scale quantum entanglement device whose nonlinearity (so the generated non-classicality) can be tuned by several orders of magnit...
Energy spectrum of a 2D Dirac oscillator in the presence of a constant magnetic field and an antidot potential
Akçay, Hüseyin; Sever, Ramazan (2016-07-04)
We investigate the energy spectrum and the corresponding eigenfunctions of a 2D Dirac oscillator confined by an antidot potential in the presence of a magnetic field and Aharonov-Bohm flux field. Analytical solutions are obtained and compared with the results of the Schrodinger equation found in the literature. Further, the dependence of the spectrum on the magnetic quantum number and on the repulsive potential is discussed.
Extended dynamical symmetries of Landau levels in higher dimensions
Kürkcüoğlu, Seçkin; YURDUŞEN, İSMET (Springer Science and Business Media LLC, 2020-02-14)
Continuum models for time-reversal (TR) invariant topological insulators (Tis) in d >= 3 dimensions are provided by harmonic oscillators coupled to certain SO(d) gauge fields. These models are equivalent to the presence of spin-orbit (SO) interaction in the oscillator Hamiltonians at a critical coupling strength (equivalent to the harmonic oscillator frequency) and leads to flat Landau Level (LL) spectra and therefore to infinite degeneracy of either the positive or the negative helicity states depending on...
The Wigner molecule in a 2D quantum dot
Akman, N; Tomak, Mehmet (1999-10-01)
The charge density and pair correlation function of three interacting electrons confined within a two-dimensional disc-like hard-wall quantum dot are calculated by full numerical diagonalization of the Hamiltonian. The formation of a Wigner molecule in the form of equilateral triangular configuration for electrons is observed as the size of the dot is increased.
A detailed ensemble Monte Carlo study of the effect of quantum well width on quantum well infrared photodetector characteristics
Memiş, S.; Cellek, O.o.; Bostanci, U.; Tomak, Mehmet; Beşikci, Cengiz (2006-10-10)
We present a simulation based investigation of the dependence of the device characteristics on the quantum well width in AlGaAs/GaAs quantum well infrared photodetectors (QWIPs) through the ensemble Monte Carlo technique. The simulations on two different standard Al0.3Ga0.7As/GaAs QWIPs with quantum well widths of 36 and 44 Å have shown that the gain in the former is considerably higher, which is due to much longer lifetime of the photoexcited electrons as a result of lower capture probability in the device...
Citation Formats
Y. Gul, “On-chip photonic transistor based on the spike synchronization in circuit QED,” INTERNATIONAL JOURNAL OF MODERN PHYSICS B, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64149.