Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-initio study on hypothetical &ITM(2)AB&IT (M = &ITTi&IT, &ITZr&IT, & A = &ITAl&IT, &ITGa&IT, &ITIn&IT) compounds
Date
2018-01-01
Author
SÜRÜCÜ, GÖKHAN
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
The structural, electronic, anisotropic elastic, and lattice dynamical properties of the M(2)AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds belong to the family of MAX phases have been investigated by accomplishing the first principles density functional theory (DFT) calculations with utilizing the generalized-gradient approximation (GGA). Structural parameters, formation enthalpies, and X-ray diffraction patterns have been calculated for all compounds. Electronic band structure and corresponding density of states (DOS) have been obtained. Having negative formation enthalpy showed that, all compounds could be experimentally synthesized. Also, among the nine different M(2)AB compounds, the most stable one has been found as Hf2InB with respect to the formation enthalpies and band filling theory calculations. Moreover, the elastic constants have been predicted using the stress-finite strain technique. The numerical estimations of the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, Pugh's modulus, hardness, thermal conductivities, and anisotropy factors have been studied. All compounds are found to have low thermal conductivity and all compounds (except Zr involved ones) are hard materials and mechanically stable. Furthermore, the phonon dispersion curves as well as corresponding phonon PDOS have been plotted.
Subject Keywords
Borides
,
Elastic properties
,
Mechanical properties
,
Phonons
,
Electronic properties
,
MAX phases
URI
https://hdl.handle.net/11511/64200
Journal
MATERIALS CHEMISTRY AND PHYSICS
DOI
https://doi.org/10.1016/j.matchemphys.2017.09.050
Collections
Department of Physics, Article