Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The use of stochastic methods to determine the dynamic fracture strength
Date
1999-08-28
Author
Esen, S
Ural, D
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
138
views
0
downloads
Cite This
This paper introduces the use of stochastic methods in computing the dynamic fracture strength of rock due to blasting and compares the results with a deterministic method. Dynamic fracture strength is a function of rock properties density, p-wave velocity, s-wave velocity and dynamic tensile strength. Generated sample functions of these variables are formed by one-dimensional random processes. Stochastic methodology computes the dynamic fracture strength by incorporating the variations in these random variables. It has been shown that the maximum stress obtained by the analysis utilizing stochastic methodology are greater than the deterministic method. The variation of the explosive type changes the dynamic fracture strength of rock.
URI
https://hdl.handle.net/11511/64417
Collections
Department of Mining Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
The Theory and Application of an Electromagnetic Target Recognition Method based on Natural-Resonance for Multi-Targets
Secmen, Mustafa; Sayan, Gönül (2008-01-01)
This paper presents the application of an electromagnetic target recognition method based on natural resonance mechanism and MUSIC algorithm to the target sets containing single amd multi-targets. The simpler case of the proposed method was applied to single targets previously and successful results were obtained [1]. However, when multi-targets are added to the test target set, the method needs crucial modifications and these modifications are mentioned in detail in this study. Owing to these modifications...
The stability of linear periodic Hamiltonian systems on time scales
Zafer, Ağacık (2013-03-01)
In this work, we give a new stability criterion for planar periodic Hamiltonian systems, improving the results from the literature. The method is based on an application of the Floquet theory recently established in [J.J. DaCunha, J.M. Davis, A unified Floquet theory for discrete, continuous, and hybrid periodic linear systems, J. Differential Equations 251 (2011) 2987-3027], and the use of a new definition for a generalized zero. The results obtained not only unify the related continuous and discrete ones ...
THE USE OF CONTINUOUS CENTRIFUGAL GRAVITY CONCENTRATION IN GRINDING CIRCUIT. MODIFIED APPROACH FOR IMPROVED METALLURGICAL PERFORMANCE AND REDUCED GRINDING REQUIREMENTS
Altun, Naci Emre; Klein, Bern (2015-01-01)
The use of centrifugal gravity concentration in the closed-grinding circuit of a gold-containing massive sulphide ore was tested on classifier underflow and overflow. A continuous Knelson CVD6 was retrofitted to the hydrocyclone underflow for recovery of Au and Pb at a coarser feed size. The objective of treatment of overflow was recovering unliberated Au prior to flotation. The tests were performed in actual operating conditions at Nyrstar's Myra Falls Mine. The results of the tests on the cyclone underflo...
AN ANALYSIS TO IMPROVE STABILITY OF DRIVE-MODE OSCILLATIONS IN CAPACITIVE VIBRATORY MEMS GYROSCOPES
Alper, S. E.; Sahin, K.; Akın, Tayfun (2009-01-29)
This paper presents an analysis showing that it is possible to determine the factors that limit the stability of drive-mode oscillations of a vibratory MEMS gyroscope with precise modeling. Specifically, unwanted electrical resonance characteristics of the gyroscope drive-mode are analyzed together with analytical expressions, whereas the results of the theoretical analyses are verified both by simulations and measurements, which agree very well. It is demonstrated that the stability of the drive-mode oscil...
The performance of complex-structure fractured reservoirs considering natural and induced matrix block size, shape, and distribution
Al-Rbeawi, Salam (Elsevier BV, 2020-09-01)
This paper introduces an analytical approach for the performance of the fractured reservoir considering the impact of the matrix block size, shape, and distribution. The objective is better understanding the roles of the variable interporosity flow systems, fracture flowing systems, and reservoir matrix heterogeneity in the responses of the wellbore pressure drop, flow rate, cumulative production, and productivity index. This understanding could help to eliminate the uncertainties and increase the accuracy ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Esen and D. Ural, “The use of stochastic methods to determine the dynamic fracture strength,” PARIS, FRANCE, 1999, p. 1081, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64417.