Periodic stationarity conditions for periodic autoregressive moving average processes as eigenvalue problems

1997-08-01
Ula, TA
Smadi, AA
The determination of periodic stationarity conditions for periodic autoregressive moving average (PARMA) processes is a prerequisite to their analysis. Means of obtaining these conditions in analytically simple forms are sought. It is shown that periodic stationarity conditions for univariate and multivariate PARMA processes can always be reduced to eigenvalue problems, which are computationally and analytically easier to deal with. Two different lumpings of the periodic process are considered along this line. The first is the common w-span lumping over all w periods. The second lumping considered is the p-span lumping of the pth order periodic autoregressive process over p periods, which is based on a recently introduced lumping technique. It is shown that p-span lumping may yield the periodic stationarity conditions in an analytically simpler form as compared to w-span lumping when p < w.
WATER RESOURCES RESEARCH

Suggestions

Performance evaluation of satellite- and model-based precipitation products over varying climate and complex topography
Amjad, Muhammad; Yılmaz, Mustafa Tuğrul; Yücel, İsmail; Yılmaz, Koray Kamil (Elsevier BV, 2020-05-01)
Accuracy assessment of precipitation retrievals is a pre-requisite for many hydrological studies as it helps to understand the source and the magnitude of the uncertainty in hydrological response variables, particularly over regions with complex topography. This study evaluates GPM IMERGv05, TMPA 3B42V7, ERA-Interim, and ERA5 precipitation products using 256 ground-based gauge stations between 2014 and 2018 over Turkey known to have complex topography and varying climate. Error statistics, categorical perfo...
Groundwater recharge estimation from ephemeral streams. Case study: Wadi Tabalah, Saudi Arabia
Sorman, AU; Abdulrazzak, MJ; MorelSeytoux, HJ (Wiley, 1997-10-15)
Estimation of groundwater recharge to an unconfined aquifer is studied using analytical and numerical techniques and results are compared with field observations. There is an acute need for such estimation in water balance studies in arid climates, and the case study in this paper is for such a region. The wetting front movement in the unsaturated zone depends on antecedent soil moisture, the ponded water depth and its duration, and on the position of the water table and the hydraulic properties of the unsa...
Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin
Yılmaz, Mustafa Tuğrul; Zaitchik, Ben; Hain, Chris R.; Crow, Wade T.; Ozdogan, Mutlu; Chun, Jong Ahn; Evans, Jason (American Geophysical Union (AGU), 2014-01-01)
Regional evapotranspiration (ET) can be estimated using diagnostic remote sensing models, generally based on principles of energy balance closure, or with spatially distributed prognostic models that simultaneously balance both energy and water budgets over landscapes using predictive equations for land surface temperature and moisture states. Each modeling approach has complementary advantages and disadvantages, and in combination they can be used to obtain more accurate ET estimates over a variety of land...
Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients
Spiteri, Claudette; Slomp, Caroline P.; Tuncay, Kağan; Meile, Christof (American Geophysical Union (AGU), 2008-02-22)
[1] A two-dimensional density-dependent reactive transport model, which couples groundwater flow and biogeochemical reactions, is used to investigate the fate of nutrients (NO(3)(-), NH(4)(+), and PO(4)) in idealized subterranean estuaries representing four end-members of oxic/anoxic aquifer and seawater redox conditions. Results from the simplified model representations show that the prevalent flow characteristics and redox conditions in the freshwater-seawater mixing zone determine the extent of nutrient ...
Tracer model identification using artificial neural networks
Akın, Serhat (American Geophysical Union (AGU), 2005-10-26)
The derivation of transport parameters from tracer tests conducted in geothermal systems will depend strongly on the conceptual and mathematical model that is fitted to the data. Depending on the model employed the estimation of transport parameters (porosity and dispersivity of the fracture network, porosity of the matrix) may result in a significant variation in dispersivity. If the results from such tracer tests are to be used in parameter selection for larger-scale models, it is crucial that the tracer ...
Citation Formats
T. Ula and A. Smadi, “Periodic stationarity conditions for periodic autoregressive moving average processes as eigenvalue problems,” WATER RESOURCES RESEARCH, pp. 1929–1934, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64666.