Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Lax tensors and separable coordinates in (2+1) dimensions
Date
2000-11-01
Author
Baleanu, D
Baskal, S
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
165
views
0
downloads
Cite This
We study the Lax tensors of the separable coordinates in (2+1) dimensions. The Lax tensors of the dual manifolds are investigated.
Subject Keywords
General Physics and Astronomy
URI
https://hdl.handle.net/11511/64683
Journal
CZECHOSLOVAK JOURNAL OF PHYSICS
DOI
https://doi.org/10.1023/a:1022840419665
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Anti-de Sitter-Wave Solutions of Higher Derivative Theories
GÜRSES, METİN; Hervik, Sigbjorn; Sisman, Tahsin Cagri; Tekin, Bayram (American Physical Society (APS), 2013-09-05)
We show that the recently found anti-de Sitter (AdS)-plane and AdS-spherical wave solutions of quadratic curvature gravity also solve the most general higher derivative theory in D dimensions. More generally, we show that the field equations of such theories reduce to an equation linear in the Ricci tensor for Kerr-Schild spacetimes having type-N Weyl and type-N traceless Ricci tensors.
Singular potentials and moving boundaries in 3D
Yuce, C (Elsevier BV, 2004-02-16)
In this Letter, the problem of a spinless particle under the time-dependent harmonic oscillator potential and a singular potential with a moving boundary is studied in the spherical coordinates. Some transformations are used to transform the moving boundary conditions to the fixed boundary conditions. An exact solution is constructed.
Effective Mass Dirac-Morse Problem with any kappa-value
Arda, Altug; Sever, Ramazan; TEZCAN, CEVDET; Akcay, Hueseyin (IOP Publishing, 2010-04-01)
The Dirac-Morse problem is investigated within the framework of an approximation to the term proportional to 1/r(2) in the view of the position-dependent mass formalism. The energy eigenvalues and corresponding wave functions are obtained by using the parametric generalization of the Nikiforov-Uvarov method for any kappa-value. We also study the approximate energy eigenvalues, and the corresponding wave functions in the case of the constant-mass for pseudospin, and spin cases, respectively.
Hermitian and gauge-covariant Hamiltonians for a particle in a magnetic field on cylindrical and spherical surfaces
Shikakhwa, M. S.; Chair, N. (IOP Publishing, 2017-01-01)
We construct the Hermitian Schrodinger Hamiltonian of spin-less particles and the gauge-covariant Pauli Hamiltonian of spin one-half particles in a magnetic field, which are confined to cylindrical and spherical surfaces. The approach does not require the use of involved differential-geometrical methods and is intuitive and physical, relying on the general requirements of Hermicity and gauge-covariance. The surfaces are embedded in the full three-dimensional space and confinement to the surfaces is achieved...
Discrete symmetries and nonlocal reductions
GÜRSES, METİN; Pekcan, Asli; Zheltukhın, Kostyantyn (Elsevier BV, 2020-01-31)
We show that nonlocal reductions of systems of integrable nonlinear partial differential equations are the special discrete symmetry transformations.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Baleanu and S. Baskal, “Lax tensors and separable coordinates in (2+1) dimensions,”
CZECHOSLOVAK JOURNAL OF PHYSICS
, pp. 1189–1194, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64683.