Anti-periodic solutions for state-dependent impulsive recurrent neural networks with time-varying and continuously distributed delays

2017-11-01
Sayli, Mustafa
YILMAZ, ENES
In this paper, we address a new model of neural networks related to the impulsive phenomena which is called state-dependent impulsive recurrent neural networks with time-varying and continuously distributed delays. We investigate sufficient conditions on the existence and uniqueness of exponentially stable anti-periodic solution for these neural networks by employing method of coincide degree theory and an appropriate Lyapunov function. Moreover, we present an illustrative example to show the effectiveness and feasibility of the obtained theoretical results.
ANNALS OF OPERATIONS RESEARCH

Suggestions

Mutual relevance of investor sentiment and finance by modeling coupled stochastic systems with MARS
Kalayci, Betul; Ozmen, Ayse; Weber, Gerhard Wilhelm (Springer Science and Business Media LLC, 2020-08-01)
Stochastic differential equations (SDEs) rapidly become one of the most well-known formats in which to express such diverse mathematical models under uncertainty such as financial models, neural systems, behavioral and neural responses, human reactions and behaviors. They belong to the main methods to describe randomness of a dynamical model today. In a financial system, different kinds of SDEs have been elaborated to model various financial assets. On the other hand, economists have conducted research on s...
Stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market
Savku, E.; Weber, Gerhard Wilhelm (Springer Science and Business Media LLC, 2020-08-01)
We apply dynamic programming principle to discuss two optimal investment problems by using zero-sum and nonzero-sum stochastic game approaches in a continuous-time Markov regime-switching environment within the frame work of behavioral finance. We represent different states of an economy and, consequently, investors' floating levels of psychological reactions by aD-state Markov chain. The first application is a zero-sum game between an investor and the market, and the second one formulates a nonzero-sum sto...
Formulation and solution of an optimal control problem for industrial project control
Schmidt, Klaus Verner (Springer Science and Business Media LLC, 2019-09-15)
n this paper, we consider the monitoring and control of industrial projects that are performed by executing different activities within a given time duration. Hereby, it is desired to apply project control to each activity in order to avoid unexpected deviations in the project cost, respecting that the amount and cost of project control needs to be limited. We model the general setting of industrial project control as an optimal control problem with the goal of maximizing the cost reduction (savings) when a...
Neural network calibrated stochastic processes: forecasting financial assets
Giebel, Stefan; Rainer, Martin (Springer Science and Business Media LLC, 2013-03-01)
If a given dynamical process contains an inherently unpredictable component, it may be modeled as a stochastic process. Typical examples from financial markets are the dynamics of prices (e.g. prices of stocks or commodities) or fundamental rates (exchange rates etc.). The unknown future value of the corresponding stochastic process is usually estimated as the expected value under a suitable measure, which may be determined from distribution of past (historical) values. The predictive power of this estimati...
An approximation for kanban controlled assembly systems
TOPAN, Engin; Avşar, Zeynep Müge (Springer Science and Business Media LLC, 2011-01-01)
An approximation is proposed to evaluate the steady-state performance of kanban controlled two-stage assembly systems. The development of the approximation is as follows. The considered continuous-time Markov chain is aggregated keeping the model exact, and this aggregate model is approximated replacing some state-dependent transition rates with constant rates. The approximate aggregate model is, then, decomposed into submodels and a product-form steady-state distribution is obtained for each submodel. Fina...
Citation Formats
M. Sayli and E. YILMAZ, “Anti-periodic solutions for state-dependent impulsive recurrent neural networks with time-varying and continuously distributed delays,” ANNALS OF OPERATIONS RESEARCH, pp. 159–185, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64720.