Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Measurement of AC magnetic field distribution using magnetic resonance imaging
Date
1997-10-01
Author
Ider, YZ
Muftuler, LT
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
Electric currents are applied to body in numerous applications in medicine such as electrical impedance tomography, cardiac defibrillation, electrocautery, and physiotherapy. If the magnetic field within a region is measured, the currents generating these fields can be calculated using the curl operator. In this study, magnetic fields generated within a phantom by currents passing through an external wire is measured using a magnetic resonance imaging (MRI) system, A pulse sequence that is originally designed for mapping static magnetic field inhomogeneity is adapted, AC current in the form of a burst sine wave is applied synchronously with the pulse sequence, The frequency of the applied current is in the audio range with an amplitude of 175-mA rms, It is shown that each voxel value of sequential images obtained by the proposed pulse sequence is modulated similar to a single-tone broadband frequency modulated (FM) waveform with the ac magnetic field strength determining the modulation index, An algorithm is developed to calculate the ac magnetic field intensity at each voxel using the frequency spectrum of the voxel signal, Experimental results show that the proposed algorithm can be used to calculate ac magnetic field distribution within a conducting sample that is placed in an MRI system.
Subject Keywords
Current density imaging
,
Magnetic field measurement
,
Magnetic resonance imaging
URI
https://hdl.handle.net/11511/64744
Journal
IEEE TRANSACTIONS ON MEDICAL IMAGING
DOI
https://doi.org/10.1109/42.640752
Collections
Department of Electrical and Electronics Engineering, Article