Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
CASIMIR EFFECT IN A HALF EINSTEIN UNIVERSE - AN EXACTLY SOLVABLE CASE IN CURVED BACKGROUND AND WITH A SPHERICAL BOUNDARY
Date
1993-09-01
Author
BAYIN, SS
OZCAN, M
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
181
views
0
downloads
Cite This
We reconsider the Casimir problem for the massless conformal scalar field in a 'half Einstein universe'. We first calculate the renormalized vacuum energy by using the mode sum method. Next, we calculate the renormalized vacuum energy-momentum tensor by using the point-splitting method. We construct the Green function by using the eigenfunctions, which are obtained by solving the wave equation with the appropriate boundary conditions. We discuss the importance of this case as well as its relation to previous calculations.
Subject Keywords
Physics and Astronomy (miscellaneous)
URI
https://hdl.handle.net/11511/64779
Journal
CLASSICAL AND QUANTUM GRAVITY
DOI
https://doi.org/10.1088/0264-9381/10/9/001
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Gravitational interactions in 2+1 dimensions
Dereli, Tekin; Tucker, Robin W. (IOP Publishing, 1988-7-1)
Modifications to Einstein's vacuum equations for gravitation in 2+1 dimensions are studied. The addition of the Schouten-Eisenhart 2-forms to the field equations admits gravitational wave solutions although no non-trivial static rotationally symmetric metrics exist. Higher-order derivative models for the metric are discussed together with a 2+1 Brans-Dicke theory. The latter is solved for a static metric exhibiting singularities.
Neutrino oscillations induced by spacetime torsion
Adak, M; Dereli, T; Ryder, LH (IOP Publishing, 2001-04-21)
The gravitational neutrino oscillation problem is studied by considering the Dirac Hamiltonian in a Riemann-Cartan spacetime and calculating the dynamical phase. Torsion contributions which depend on the spin direction of the mass eigenstates are found. These effects are of the order of Planck scales.
Electric dipole moments of charged leptons and lepton flavor violating interactions in the general two Higgs doublet model
Iltan, EO (American Physical Society (APS), 2001-07-01)
We calculate the electric dipole moment of the electron using the experimental result of the muon electric dipole moment and upper limit of the BR(mu-->e gamma) in the framework of the general two Higgs doubler model. Our prediction is 10(-32) e cm, which lies in the experimental current limits. Further, we obtain constraints for the Yukawa couplings )over bar>(D)(N,taue) and )over bar>(D)(N,tau mu). Finally, we present an expression which connects the BR(tau-->mu gamma) and the electric dipole moment of th...
Topologically massive gravity as a Pais-Uhlenbeck oscillator
Sarıoğlu, Bahtiyar Özgür; Tekin, Bayram (IOP Publishing, 2006-12-21)
We give a detailed account of the free- field spectrum and the Newtonian limit of the linearized ` massive' ( Pauli -Fierz), 'topologically massive' ( Einstein Hilbert - Chern - Simons) gravity in 2 + 1 dimensions about a Minkowski spacetime. For a certain ratio of the parameters, the linearized free theory is Jordan diagonalizable and reduces to a degenerate ` Pais - Uhlenbeck' oscillator which, despite being a higher derivative theory, is ghost free.
Bound State Solutions of Schrodinger Equation for Generalized Morse Potential with Position-Dependent Mass
Arda, Altug; Sever, Ramazan (IOP Publishing, 2011-07-15)
The effective mass one-dimensional Schrodinger equation for the generalized Morse potential is solved by using Nikiforov-Uvarov method. Energy eigenvalues and corresponding eigenfunctions are computed analytically. The results are also reduced to the constant mass case. Energy eigenvalues are computed numerically for some diatomic molecules. They are in agreement with the ones obtained before.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. BAYIN and M. OZCAN, “CASIMIR EFFECT IN A HALF EINSTEIN UNIVERSE - AN EXACTLY SOLVABLE CASE IN CURVED BACKGROUND AND WITH A SPHERICAL BOUNDARY,”
CLASSICAL AND QUANTUM GRAVITY
, pp. 0–0, 1993, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64779.