Feasibility analysis and proof of concept for thermoelectric energy harvesting in mobile computers

2013-03-01
Denker, R.
Muhtaroglu, A.
Thermoelectric (TE) energy harvesting in compact microelectronic systems necessitates detailed upfront analysis to ensure unacceptable performance degradation is avoided. TE integration into a notebook computer is empirically investigated in this work for energy harvesting. A detailed finite element model was constructed first for thermal simulations. The model outputs were then correlated with the thermal validation results of the selected system. In parallel, a commercial TE micro-module was empirically characterized to quantify maximum power generation opportunity from the combined system and component data set. Next, suitable "warm spots" were identified within the mobile computer model to extract TE power with minimum or no notable impact to system performance, as measured by simulated thermal changes in the system. The prediction was validated by integrating a TE micro-module to the mobile system under test. Measured TE power generation density in the vicinity of the heat pipe was 1.26 mW/cm(3) using high CPU load. The generated power scales down with lower CPU activity, and will scale up in proportion to the utilized opportunistic space within the system. The technical feasibility of TE energy harvesting in mobile computers has hence been experimentally proven for the first time. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794751]
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY

Suggestions

Empirical feasibility analysis of thermoelectric energy harvesting in thermally limited compact mobile computers
Khan, M. A. A.; Muhtaroglu, A. (AIP Publishing, 2014-01-01)
Thermoelectric (TE) generation technology was experimentally established in previous research by our group as a viable technique for energy scavenging in a large notebook computer with no significant impact to system performance. The computer under investigation was designed to have additional thermal headroom, with Central Processing Unit (CPU) temperature significantly below its maximum limit under maximum workload conditions. Yet the question remained on if and how such scavenging could be done in small,...
Modeling, transient simulations and parametric studies of parabolic trough collectors with thermal energy storage
Akba, Tufan; Baker, Derek Keıth; Güvenç Yazıcıoğlu, Almıla (Elsevier BV, 2020-3-15)
For investigating the system response of parabolic trough collector heat generating system, a plant with parabolic trough collector field and two-tank molten salt thermal energy storage model with component-level control algorithm is developed for managing various working conditions. The model is transient inside the components and responds with hourly weather and demand data. The main purpose of this work is providing an alternative design methodology that focuses on the collector field, and storage size b...
Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries
Bahrami, Arian; Okoye, Chiemeka Onyeka; Atikol, Ugur (Elsevier BV, 2017-12-01)
This study aims to contribute towards developing a sustainable roadmap for electrification program via solar energy deployment in 21 low latitude countries (0-15 degrees N) with limited access to the grid. Firstly, the available electrical energy from fixed, single and dual-axis solar tracking PV panels is demonstrated using a case study of nine selected locations in Nigeria. The annual electrical energy for the locations from a fixed 1-kW PV panel tilted at an optimal angle ranges from 1485 to 2024 kWh, wi...
Comparisons and critical assessment of global and diffuse solar irradiation estimation methodologies
Karaveli, Abdullah Bugrahan; Akınoğlu, Bülent Gültekin (Informa UK Limited, 2018-01-01)
Defining better methodologies of accurate predictions of the amount of monthly mean daily global and diffuse solar irradiation exposed is of utmost importance in order to determine the potential for utilizing the solar energy. This study compares and discusses the main methodologies, databases, and software that are used in estimating the solar irradiation to be used for the short- and long-term performances and feasibilities of solar energy systems, especially photovoltaic power plants in Turkey, and addre...
Optimization of PERC fabrication based on loss analysis in an industrially relevant environment: First results from GUNAM photovoltaic line (GPVL)
ES, FIRAT; SEMİZ, EMEL; Orhan, Efe; Genc, Ezgi; Kokbudak, Gamze; Baytemir, Gulsen; Turan, Raşit (Elsevier BV, 2020-02-01)
Passivated emitter and rear cell (PERC) concept with an already developed roadmap for 24% efficiency will be leading the photovoltaics industry in the upcoming years. In a few industrial pilot lines, efficiencies above 22% have already been attained. Pilot lines have important roles in bridging lab scale proven concepts with the products which are ready for mass production. Therefore, GUNAM Photovoltaic Line which is specialized on PERC concepts has been established to overcome the barriers that hinder the ...
Citation Formats
R. Denker and A. Muhtaroglu, “Feasibility analysis and proof of concept for thermoelectric energy harvesting in mobile computers,” JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, pp. 0–0, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64844.