Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Videos
Videos
Thesis submission
Thesis submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Contact us
Contact us
AntiWare: An Automated Android Malware Detection Tool based on Machine Learning Approach and Official Market Metadata
Date
2016-10-22
Author
Akhuseyinoglu, Nuray Baltaci
Akhuseyinoglu, Kamil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
9
views
0
downloads
Cite This
The prevalence of mobile devices has increased rapidly in recent years. People store valuable data like personal and financial information on those devices. In addition, applying "bring your own device (BYOD)" policy in companies has become popular. Hence, mobile devices are also source of valuable and confidential company information. Accordingly, there is a growing need for malware detection methods and tools to protection mobile devices against attacks targeting them. In this study, an automated feature-based static analysis method is applied to detect malicious mobile applications on Android devices. By utilizing the metadata of applications on the official market and an online free malware scanner, the feasibility of a mobile malware detection model using free public sources and having quite acceptable accuracy rates is shown. As opposed to previous studies considering only the requested permissions as feature set, additional market metadata including but not limited to application category, download number, developer name, and average rating are included in the analysis as the feature set for training supervised classification algorithms. Based on an experimental evaluation of the majority voting of antivirus (AV) engines on the free online AV community, applications in the training set are labeled as malicious or benign. Naive Bayes classification algorithm is chosen as supervised learning algorithm for the detection task. In addition, as filter-based algorithms, Chi-Square, Information Gain and ReliefF feature selection methods are used for overcoming potential overfitting problems. Finally, a quick prototype for showing the feasibility of the detection model is demonstrated with sample case applications.
Subject Keywords
Mobile malware detection
,
Machine learning
,
Classification
,
Static analysis
,
Android malware
,
Official market metadata
URI
https://hdl.handle.net/11511/64904
Collections
Graduate School of Informatics, Conference / Seminar
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. B. Akhuseyinoglu and K. Akhuseyinoglu, “AntiWare: An Automated Android Malware Detection Tool based on Machine Learning Approach and Official Market Metadata,” 2016, p. 0, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64904.