SWARM-based data delivery in Social Internet of Things

2019-03-01
Hasan, Mohammed Zaki
Al-Turjman, Fadi
Social Internet of Things (SIoTs) refers to the rapidly growing network of connected objects and people that are able to collect and exchange data using embedded sensors. To guarantee the connectivity among these objects and people, fault tolerance routing has to be significantly considered. In this paper, we propose a bio-inspired particle multi-swarm optimization (PMSO) routing algorithm to construct, recover and select k-disjoint paths that tolerates the failure while satisfying quality of service (QoS) parameters. Multi-swarm strategy enables determining the optimal directions in selecting the multipath routing while exchanging messages from all positions in the network. The validity of the proposed algorithm is assessed and results demonstrate high-quality solutions compared with the canonical particle swarm optimization (CPSO), and fully particle multi-swarm optimization (FPMSO).
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE

Suggestions

Energy efficient wireless unicast routing alternatives for machine-to-machine networks
Tekbiyik, Neyre; Uysal, Elif (Elsevier BV, 2011-09-01)
Machine-to-machine (M2M) communications is a new and rapidly developing technology for large-scale networking of devices without dependence on human interaction. Energy efficiency is one of the important design objectives for machine-to-machine network architectures that often contain multihop wireless subnetworks. Constructing energy-efficient routes for sending data through such networks is important not only for the longevity of the nodes which typically depend on battery energy, but also for achieving a...
Path planning for mobile-anchor based wireless sensor network localization: Static and dynamic schemes
Erdemir, Ecenaz; Tuncer, Temel Engin (Elsevier BV, 2018-08-01)
In wireless sensor networks, node locations are required for many applications. Usually, anchors with known positions are employed for localization. Sensor positions can be estimated more efficiently by using mobile anchors (MAs). Finding the best MA trajectory is an important problem in this context. Various path planning algorithms are proposed to localize as many sensors as possible by following the shortest path with minimum number of anchors. In this paper, path planning algorithms for MA assisted loca...
SWARM-based data delivery framework in the Ad Hoc Internet of Things
Hasan, Mohammed Zaki; Al-Turjman, Fadi (2017-12-08)
Internet of Things (IoTs) refers to the rapidly growing network of connected objects that are able to collect and exchange data using embedded sensors. To guarantee the connectivity among these objects and devices, fault tolerant routing has been received a significant attention in recent years. In this paper, we propose a bio-inspired particle multi-swarm optimization (PMSO) routing algorithm to construct, recover and select k-disjoint paths that tolerates the failure while satisfying quality of service (Q...
Machine learning algorithms for accurate flow-based network traffic classification: Evaluation and comparison
Soysal, Murat; Schmidt, Şenan Ece (Elsevier BV, 2010-06-01)
The task of network management and monitoring relies on an accurate characterization of network traffic generated by different applications and network protocols. We employ three supervised machine learning (ML) algorithms, Bayesian Networks, Decision Trees and Multilayer Perceptrons for the flow-based classification of six different types of Internet traffic including peer-to-peer (P2P) and content delivery (Akamai) traffic. The dependency of the traffic classification performance on the amount and composi...
Cognitive-Node Architecture and a Deployment Strategy for the Future WSNs
Al-Turjman, Fadi (Springer Science and Business Media LLC, 2019-10-01)
The advent of sensing and communication technologies represents the next step in the evolution of wireless sensor networks (WSNs) and future applications. Future WSNs systems demand that connected devices could be able to work autonomously, while surfing on-line generated data and process them for self-decision making. Accordingly, we propose a cognitive Information-Centric Sensor Network (ICSN) framework. The fundamentals of cognition in ICSN can be recognized as a promising direction in addressing opportu...
Citation Formats
M. Z. Hasan and F. Al-Turjman, “SWARM-based data delivery in Social Internet of Things,” FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, pp. 821–836, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65117.