Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On the moduli of surfaces admitting genus 2 fibrations
Date
2002-12-01
Author
Onsiper, H
Tekinel, C
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
224
views
0
downloads
Cite This
We investigate the structure of the components of the moduli space Of Surfaces of general type, which parametrize surfaces admitting nonsmooth genus 2 fibrations of nonalbanese type, over curves of genus g(b) greater than or equal to 2.
Subject Keywords
General Mathematics
URI
https://hdl.handle.net/11511/65212
Journal
ARCHIV DER MATHEMATIK
DOI
https://doi.org/10.1007/bf02638391
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
On the moduli spaces of fiber bundles of curves of genus >= 2
Onsiper, H (Springer Science and Business Media LLC, 2000-11-02)
We determine the moduli spaces parametrizing analytic fiber bundles of curves of genus g greater than or equal to 2 over curves of genus g(b) > (g + 1)/2.
On symplectic quotients of K3 surfaces
Cinkir, Z; Onsiper, H (Elsevier BV, 2000-12-18)
In this note, we construct generalized Shioda-Inose structures on K3 surfaces using cyclic covers and almost functoriality of Shioda-Inose structures with respect to normal subgroups of a given group of symplectic automorphisms.
On entire rational maps of real surfaces
Ozan, Yıldıray (The Korean Mathematical Society, 2002-01-01)
In this paper, we define for a component X-0 of a nonsingular compact real algebraic surface X the complex genus of X-0, denoted by g(C)(X-0), and use this to prove the nonexistence of nonzero degree entire rational maps f : X-0 --> Y provided that g(C)(Y) > g(C)(X-0), analogously to the topological category. We construct connected real surfaces of arbitrary topological genus with zero complex genus.
The second homology groups of mapping class groups of orientable surfaces
Korkmaz, Mustafa (Cambridge University Press (CUP), 2003-05-01)
Let $\Sigma_{g,r}^n$ be a connected orientable surface of genus $g$ with $r$ boundary components and $n$ punctures and let $\Gamma_{g,r}^n$ denote the mapping class group of $\Sigma_{g,r}^n$, namely the group of isotopy classes of orientation-preserving diffeomorphisms of $\Sigma_{g,r}^n$ which are the identity on the boundary and on the punctures. Here, we see the punctures on the surface as distinguished points. The isotopies are required to be the identity on the boundary and on the punctures. If $r$ and...
On the Krall-type polynomials on q-quadratic lattices
Alvarez-Nodarse, R.; Adiguzel, R. Sevinik (Elsevier BV, 2011-08-01)
In this paper, we study the Krall-type polynomials on non-uniform lattices. For these polynomials the second order linear difference equation, q-basic series representation and three-term recurrence relations are obtained. In particular, the q-Racah-Krall polynomials obtained via the addition of two mass points to the weight function of the non-standard q-Racah polynomials at the ends of the interval of orthogonality are considered in detail. Some important limit cases are also discussed. (C) 2011 Royal Net...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Onsiper and C. Tekinel, “On the moduli of surfaces admitting genus 2 fibrations,”
ARCHIV DER MATHEMATIK
, pp. 529–533, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65212.