Dual-band perfect metamaterial absorber for solar cell applications

2015-10-01
Rufangura, Patrick
Sabah, Cumali
The efficiency of solar photovoltaic (PV) cells has been one of the major problems impeding its global adoption as one of the sustainable substitutes to fossil fuel based technologies. Metamaterial (MTM) based solar cells offer an opportunity towards increasing the system efficiency by enhancing the total absorbed solar radiation incident on this device. In this study, a nanostructure-based MTM perfect absorber has been designed and simulated. By adjusting geometrical parameters and MTM structure properties, nearly perfect dual-band absorptions have been obtained with 99.99% and 99.90% absorption at 543.75 THz and 663.75 THz, respectively. The proposed structure is simple and more flexible for scaling, which helps achievement of multiple-band absorption. Implementation of the intended MTM structure can effectively lead to the realization of more efficient PV solar cells.

Suggestions

Wide-band perfect metamaterial absorber for solar cells applications
Rufangura, Patrick; Sabah, Cumali; Sustainable Environment and Energy Systems (2015-8)
Global adoption of solar photovoltaic (PV) cells as a sustainable substitute to fossil fuel technologies has been impeded by its low efficiency. Generally, efficiency of these devices strongly depends on their ability to absorb radiations of electromagnetic waves incident on them. Their low absorptivity provides a challenge. Metamaterials (MTM) based solar cells offer an opportunity for increasing the system efficiency by enhancing the total absorbed solar radiation incident on solar PV cells. In this thesi...
Analytical Modelling, Simulation and Comparative Study of Multi-Junction Solar Cells Efficiency
Hadjdida, Abdelkader; Bourahla, Mohamed; Ertan, Hulusi Bülent; Bekhti, Mohamed (2018-12-01)
Currently, solar energy is promising the primary source of renewable energy that has a great potential to generate power for an extremely low operating cost when compared to already existing power generation technologies. Increasing the efficiency of solar cells is a major goal and the prominent factor in photovoltaic system research. Current triple junction solar cells reach 30% and the next generation will bring 35% in 5 years to peak at 40%. These cells are used in space environment and in terrestrial sy...
Multiband Metamaterial Absorber Design Based on Plasmonic Resonances for Solar Energy Harvesting
Mulla, Batuhan; Sabah, Cumali (2016-10-01)
A new metamaterial absorber is designed and characterized numerically for the harvesting of solar energy. The design is composed of three layers in which the interaction among them gives rise to the plasmonic resonances. The main operation frequency range of the proposed structure is chosen to be the visible regime. However, the design is also analyzed for the infrared and ultraviolet regimes. In order to characterize the absorber, some parametric studies with respect to the dimensions of the structure are ...
Numerical investigation of a stand alone solar hydrogen energy system effects of PEFC degradation
Ender, Ozden; Tarı, İlker (null; 2015-08-12)
An existing stand-alone solar energy system producing hydrogen for energy storage is numerically investigated focusing on the degradation of Polymer Electrolyte Fuel Cell (PEFC) and its effects on the overall performance of the system. The system consists of Photovoltaic (PV) panels, polymer electrolyte based electrolyzers, H2 and O2 storage tanks and a commercial PEFC stack. A PEFC is numerically investigated both as new and as degraded (for about two years). Using a variety of observed degradation pattern...
Selective emitter formation via single step doping through laser patterned mask oxide layer for monocrystalline silicon solar cells
Çiftpınar, Emine Hande; Turan, Raşit; Department of Physics (2014)
Selective emitter is one of the new approaches for higher efficiency solar cells. Although selective emitter cells could be processed by several different methods such as; etch back process, laser doping, ion implantation, doping paste, a different method based on diffusion through a laser patterned oxide layer was studied in this thesis. Utilization of pattern oxide layer as a diffusion barrier enables to obtain selective emitter profile via single step doping which reduces overall production cost and time...
Citation Formats
P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” VACUUM, pp. 68–74, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65218.