Effective polar potential in the central force Schrodinger equation

Download
2010-01-01
Shikakhwa, M. S.
Mustafa, M.
The angular part of the Schrodinger equation for a central potential is brought to the one-dimensional 'Schrodinger form' where one has a kinetic energy plus potential energy terms. The resulting polar potential is seen to be a family of potentials characterized by the square of the magnetic quantum number m. It is demonstrated that this potential can be viewed as a confining potential that attempts to confine the particle to the xy-plane, with a strength that increases with increasing m. Linking the solutions of the equation to the conventional solutions of the angular equation, i.e. the associated Legendre functions, we show that the variation in the spatial distribution of the latter for different values of the orbital angular quantum number l can be viewed as being a result of 'squeezing' with different strengths by the introduced 'polar potential'.
EUROPEAN JOURNAL OF PHYSICS

Suggestions

Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
Eshghi, M.; Sever, Ramazan; Ikhdair, S. M. (IOP Publishing, 2018-02-01)
We need to solve a suitable exponential form of the position-dependent mass (PDM) Schrodinger equation with a charged particle placed in the Hulthen plus Coulomb-like potential field and under the actions of the external magnetic and Aharonov-Bohm (AB) flux fields. The bound state energies and their corresponding wave functions are calculated for the spatially-dependent mass distribution function of interest in physics. A few plots of some numerical results with respect to the energy are shown.
Improved analytical approximation to arbitrary l-state solutions of the Schrodinger equation for the hyperbolical potentials
IKHDAİR, SAMEER; Sever, Ramazan (Wiley, 2009-10-01)
The Schrodinger equation for the rotational-vibrational (ro-vibrational) motion of a diatomic molecule with empirical potential functions is solved approximately by means of the Nikiforov-Uvarov method. The approximate energy spectra and the corresponding normalized total wavefunctions are calculated in closed form and expressed in terms of the hypergeometric functions or Jacobi polynomials P-n((mu,nu)) (x), where mu > -1, nu > -1 and x is an element of[-1, +1]. The s-waves analytic solution is obtained. Th...
Exact solution of the Dirac equation with the Mie-type potential under the pseudospin and spin symmetry limit
Aydogdu, Oktay; Sever, Ramazan (Elsevier BV, 2010-02-01)
We investigate the exact solution of the Dirac equation for the Mie-type potentials under the conditions of pseudospin and spin symmetry limits. The bound state energy equations and the corresponding two-component spinor wave functions of the Dirac particles for the Mie-type potentials with pseudospin and spin symmetry are obtained. We use the asymptotic iteration method in the calculations. Closed forms of the energy eigenvalues are obtained for any spin-orbit coupling term K. We also investigate the energ...
Effective Mass Schrodinger Equation via Point Canonical Transformation
Arda, Altug; Sever, Ramazan (IOP Publishing, 2010-07-01)
Exact solutions of the effective radial Schrodinger equation are obtained for some inverse potentials by using the point canonical transformation. The energy eigenvalues and the corresponding wave functions are calculated by using a set of mass distributions.
Approximate solution to the time-dependent Kratzer plus screened Coulomb potential in the Feinberg-Horodecki equation
Farout, Mahmoud; Sever, Ramazan; Ikhdair, Sameer M. (IOP Publishing, 2020-06-01)
We obtain the quantized momentum eigenvalues P-n together with space-like coherent eigenstates for the space-like counterpart of the Schrodinger equation, the Feinberg-Horodecki equation, with a combined Kratzer potential plus screened coulomb potential which is constructed by temporal counterpart of the spatial form of these potentials. The present work is illustrated with two special cases of the general form: the time-dependent modified Kratzer potential and the time-dependent screened Coulomb potential.
Citation Formats
M. S. Shikakhwa and M. Mustafa, “Effective polar potential in the central force Schrodinger equation,” EUROPEAN JOURNAL OF PHYSICS, pp. 151–156, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65364.