Two-bit transform for binary block motion estimation

Erturk, A
Erturk, S
One-bit transforms (IBTs) have been proposed for low-complexity block-based motion estimation by reducing the representation order to a single bit, and employing binary matching criteria. However, as a single bit is used in the representation of image frames, bad motion vectors are likely to be resolved in 1BT-based motion estimation algorithms particularly for small block sizes. It is proposed in this paper to utilize a two-bit transform (2BT) for block-based motion estimation. Image frames are converted into two-bit representations by a simple block-by-block two bit transform based on multithresholding with mean and linearly approximated standard deviation values. In order to avoid blocking effects at block boundaries during the block-by-block transformation while enabling the two-bit representation to be constructed according to local detail, threshold values are computed within a larger window surrounding the transforming block. The 2BT makes use of lower bit-depth and binary matching criteria properties of IBTs to achieve low-complexity block motion estimation. The 2BT improves motion estimation accuracy and seriously reduces the amount of bad motion vectors compared to 1BTs, particularly for small block sizes. It is shown that the proposed 2BT-based motion estimation technique improves motion estimation accuracy in terms of peak signal-to-noise ratio of reconstructed frames and also results in visually more accurate frames subsequent to motion compensation compared to the 1BT-based motion estimation approach.


Derivation of length extension formulas for complementary sets of sequences using orthogonal filterbanks
Candan, Çağatay (Institution of Engineering and Technology (IET), 2006-11-23)
A method for the construction of complementary sets of sequences using polyphase representation of orthogonal filterbanks is presented. It is shown that the case of two-channel filterbanks unifies individually derived length extension formulas for complementary sequences into a common framework and the general M-channel case produces novel formulas for the extension of complementary sets of sequences. The presented technique can also be used to generate polyphase and multilevel sequences.
Conjugate directions based order recursive implementation of post-Doppler adaptive target detectors
Candan, Çağatay (Institution of Engineering and Technology (IET), 2012-08-01)
An implementation for the post-Doppler adaptive target detectors enabling an efficient change of the subspace dimension is described. The proposed implementation uses the order recursive structure of the conjugate directions method and does not present any additional computational burden on the processor. The implementation can be particularly useful for the adaptive detectors with an indeterminate number of auxiliary vectors for the clutter covariance matrix estimation. Through the proposed method, the sub...
Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems
Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2008-08-01)
We present fast and accurate solutions of large-scale scattering problems involving three-dimensional closed conductors with arbitrary shapes using the multilevel fast multipole algorithm (MLFMA). With an efficient parallelization of MLFMA, scattering problems that are discretized with tens of millions of unknowns are easily solved on a cluster of computers. We extensively investigate the parallelization of MLFMA, identify the bottlenecks, and provide remedial procedures to improve the efficiency of the imp...
Implementation of the Equivalence Principle Algorithm for Potential Integral Equations
Farshkaran, Ali; Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2019-05-01)
A novel implementation of the equivalence principle algorithm (EPA) employing potential integral equations (PIEs) is presented. EPA is generalized to be compatible with PIEs that are used to formulate inner problems inside equivalence surfaces. Based on the stability of PIEs, the resulting EPA-PIE implementation is suitable for low-frequency problems involving dense discretizations with respect to wavelength. Along with the formulation and a clear demonstration of the EPA-PIE mechanism, high accuracy, stabi...
Spectral correction-based method for interharmonics analysis of power signals with fundamental frequency deviation
Salor, Oezguel (Elsevier BV, 2009-07-01)
In this paper, a spectral correction-based algorithm for interharmonic computation is proposed for especially highly fluctuating fundamental frequency cases in the power system. It has been observed and reported that fluctuating demands of some loads such as arc furnaces, or disturbances and subsequent system transients make the fundamental frequency of the power system deviate and this causes non-existing interharmonics to appear in the spectrum due to grid-effect when a standard window length is used for ...
Citation Formats
A. Erturk and S. Erturk, “Two-bit transform for binary block motion estimation,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, pp. 938–946, 2005, Accessed: 00, 2020. [Online]. Available: