Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
PEM fuel cell short stack performances of silica doped nanocomposite membranes
Date
2015-06-29
Author
DEVRİM, YILSER
Devrim, Huseyin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
433
views
0
downloads
Cite This
In this study, an air-cooled Proton Exchange Membrane Fuel Cell (PEMFC) short stack with Nafion/Silica nanocomposite membrane was designed and fabricated for net 100 W net power output to improve the stack performance at low relative humidity conditions. Composite membrane was prepared by solution casting method. Gas Diffusion Electrodes (GDE's) were produced by ultrasonic spray coating technique. Short stack design was based on electrochemical data obtained at 0.60 V was 0.45 A/cm(2) from performance tests of a single cell having the same membrane electrode assemblies (MEA) that had an active area of 100 cm(2). The short stack was tested in the constant resistance load regime, in dead-end rode, with controlling temperature by air on-off control system. A maximum power of 117 W was obtained from the short stack. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Proton exchange membrane
,
PEM fuel cell
,
Stack
,
Fuel cell system
,
Nanocomposite membrane
URI
https://hdl.handle.net/11511/65750
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2014.11.018
Collections
Unclassified, Article
Suggestions
OpenMETU
Core
Development of 500 W PEM fuel cell stack for portable power generators
DEVRİM, YILSER; Devrim, Huseyin; Eroğlu, İnci (2015-06-29)
Polymer Electrolyte Membrane Fuel Cell (PEMFC) portable power generators are gaining importance in emergency applications. In this study, an air-cooled PEMFC stack was designed and fabricated for net 500 W power output. Gas Diffusion Electrodes (GDE's) were manufactured by ultrasonic spray coating technique. Stack design was based on electrochemical data obtained at 0.60 V was 0.5 A/cm(2) from performance tests of a single cell having the same membrane electrode assemblies (MEA) that had an active area of 1...
Nafion/titanium silicon oxide nanocomposite membranes for PEM fuel cells
DEVRİM, YILSER; Erkan, Serdar; BAÇ, NURCAN; Eroğlu, İnci (2013-04-01)
In the present study, Nafion/Titanium Silicon Oxide (TiSiO4) nanocomposite membranes were prepared by recasting method for proton exchange membrane fuel cells. The composite membrane containing 10wt% TiSiO4 had a membrane thickness of 80 mu m. The membrane was characterized by thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). SEM and XRD results have proven the uniform and homogeneous distribution of TiSiO4 in Nafion, and consequently, the crystalline character of ...
Improvement of PEMFC performance with Nafion/inorganic nanocomposite membrane electrode assembly prepared by ultrasonic coating technique
Devrim, Yilser; Erkan, Serdar; BAÇ, NURCAN; Eroğlu, İnci (2012-11-01)
electrode assemblies with Nafion/nanosize titanium silicon dioxide (TiSiO4) composite membranes were manufactured with a novel ultrasonic-spray technique and tested in proton exchange membrane fuel cell (PEMFC). Nafion/TiO2 and Nafion/SiO2 nanocomposite membranes were also fabricated by the same technique and their characteristics and performances in PEMFC were compared with Nafion/TiSiO4 mixed oxide membrane. The composite membranes have been characterized by thermogravimetric analysis, scanning electron m...
Development of self-humidifying nano-composite membrane for polymer electrolyte membrane fuel cell
Çaçan, Umut Baki; Özkan, Necati; Devrim, Yılser; Department of Polymer Science and Technology (2015)
Low humidity self-humidifying nano-composite membrane electrode assemblies (MEA) were developed for Polymer Electrolyte Membrane Fuel Cell (PEMFC) working at elevated temperatures. The nano-composite membranes were prepared by adding nano-sized silica particles (SiO2) or inorganic fillers with a size of approximately 20 nm to a polymeric material which is commercially named as Nafion (Perfluoro Sulfonic Acid/PFSA). The particle content of the nano-composite membranes were between 2.5 – 10 wt. %. In this man...
Electrocatalyst development and modeling of nonisothermal two-phase flow for PEM fuel cells
Fıçıcılar, Berker; Eroğlu, İnci; Department of Chemical Engineering (2011)
A macro-homogeneous, nonisothermal, two-phase, and steady state mathematical model is developed to investigate water and thermal management in polymer electrolyte membrane (PEM) fuel cells. An original two-phase energy balance approach is used to catch the thermal transport phenomena in cases when there is a signi cant temperature di erence between the fuel cell temperature and the reactants inlet temperatures like during cold start-up. Model considers in depth electrode kinetics for both anode and cathode ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. DEVRİM and H. Devrim, “PEM fuel cell short stack performances of silica doped nanocomposite membranes,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 7870–7878, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65750.