Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
MATHEMATICAL-MODELING OF TRANSIENT HEAT AND MASS-TRANSPORT IN A BAKING BISCUIT
Date
1994-06-01
Author
OZILGEN, M
HEIL, JR
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
Drying behavior of a single baking biscuit was modeled using unsteady state, anisotropic, two dimensional, simultaneous heat and mass balances. Solutions of these equations agreed well with the experimentally determined temperature and the moisture data. Modeling revealed that in the outer sections of the baking biscuit conduction and diffusion were the dominant heat and mass transfer mechanisms, respectively. In the central section of the biscuit the gas cells cracked with the increased vapor pressure and the upward volume expansion, then air/vapor enclaves were formed among the horizontal dough layers in the radial direction. The dominant heat and mass transfer mechanisms in the central section of the biscuit were convection. Presence of two different regime zones in a baking biscuit may have important consequences concerning the strength of the commercial products against crumbling during marketing and consumption.
Subject Keywords
Food Science
,
General Chemistry
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/65875
Journal
JOURNAL OF FOOD PROCESSING AND PRESERVATION
DOI
https://doi.org/10.1111/j.1745-4549.1994.tb00248.x
Collections
Department of Food Engineering, Article