Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
HIGHER-DERIVATIVE EFFECTIVE YANG-MILLS THEORY AND STATIC SPHERICALLY SYMMETRICAL FIELD CONFIGURATIONS
Date
1993-04-01
Author
BASKAL, S
DERELI, T
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
172
views
0
downloads
Cite This
The variational field equations and the covariantly conserved energy-momentum tensor of a higher-derivative effective Yang-Mills theory are given. A class of static spherically symmetric gauge field configurations that follow from the Wu-Yang ansatz is considered.
Subject Keywords
Nuclear and High Energy Physics
URI
https://hdl.handle.net/11511/66018
Journal
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS
DOI
https://doi.org/10.1088/0954-3899/19/4/005
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Pseudospin and spin symmetry in Dirac-Morse problem with a tensor potential
AYDOĞDU, OKTAY; Sever, Ramazan (Elsevier BV, 2011-09-14)
Under the conditions of the pseudospin and spin symmetry, approximate analytical solutions of the Dirac-Morse problem with Coulomb-like tensor potential are presented. The energy eigenvalue equations are found and corresponding radial wave functions are obtained in terms of confluent hypergeometric functions. The energy eigenvalues are calculated numerically in the absence and presence of the tensor potential. We also investigate the contribution of the potential parameters to the energy splitting of the ps...
Noncommutative nonlinear sigma models and integrability
Kürkcüoğlu, Seçkin (American Physical Society (APS), 2008-09-01)
We first review the result that the noncommutative principal chiral model has an infinite tower of conserved currents and discuss the special case of the noncommutative CP1 model in some detail. Next, we focus our attention to a submodel of the CP1 model in the noncommutative spacetime A(theta)(R2+1). By extending a generalized zero-curvature representation to A(theta)(R2+1) we discuss its integrability and construct its infinitely many conserved currents. A supersymmetric principal chiral model with and wi...
Angular coefficients of Z bosons produced in pp collisions at root S=8 TeV and decaying to mu(+)mu(-) as a function of transverse momentum and rapidity
Khachatryan, V.; et. al. (Elsevier BV, 2015-11-01)
Measurements of the five most significant angular coefficients, A(0) through A(4), for Z bosons produced in pp collisions at root S = 8 TeV and decaying to mu(+)mu(-) are presented as a function of the transverse momentum and rapidity of the Z boson. The integrated luminosity of the dataset collected with the CMS detector at the LHC corresponds to 19.7 fb(-1). These measurements provide comprehensive information about the Z boson production mechanisms, and are compared to the QCD predictions at leading orde...
Polynomial solutions of the Schrodinger equation for the generalized Woods-Saxon potential
Berkdemir, C; Berkdemir, A; Sever, Ramazan (American Physical Society (APS), 2005-08-01)
The bound state energy eigenvalues and the corresponding eigenfunctions of the generalized Woods-Saxon potential are obtained by means of Nikiforov-Uvarov (NU) method. Certain bound states of the Schrodinger equation for the potential are calculated analytically and the wave functions are found in terms of the Jacobi polynomials. It is shown that the results are in good agreement with those obtained previously.
Sigma(Q)Lambda(Q)pi coupling constant in light cone QCD sum rules
Azizi, K.; Bayar, M.; Özpineci, Altuğ (American Physical Society (APS), 2009-03-01)
The strong coupling constants g(Sigma Q)Lambda(Q)pi (Q=b and c) are studied in the framework of the light cone QCD sum rules using the most general form of the baryonic currents. The predicted coupling constants are used to estimate the decay widths for the Sigma(Q)->Lambda(Q)pi decays which are compared with the predictions of the other approaches and existing experimental data.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. BASKAL and T. DERELI, “HIGHER-DERIVATIVE EFFECTIVE YANG-MILLS THEORY AND STATIC SPHERICALLY SYMMETRICAL FIELD CONFIGURATIONS,”
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS
, pp. 477–484, 1993, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66018.