Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A New Method for Leakage Inductance Calculation of Transverse Flux Machines
Date
2011-09-10
Author
Zafarani, Mohsen
Moallem, Mehdi
Ghadamyari, Mohammad Adib
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
167
views
0
downloads
Cite This
This paper presents a new analytical method for leakage inductance calculation of transverse flux permanent magnet machines. In this method, leakage flux paths are predicted base on the finite element results, and then all paths would be modeled by flux tubes. Finally, the inductance of the machine would be obtained by calculation of the permeance of flux tubes. The validity of the proposed model is verified by comparing the Finite Element results with the results obtained from the proposed approach. Comparing the results shows that the proposed model is able to accurately estimate the leakage inductance of the machine with an average error less than 9%.
Subject Keywords
Transverse Flux Machine
,
Permanent Magnet Synchronous Machine
,
Magnetic Equivalent circuit
,
Flux tube
,
Terms Leakage Inductance
URI
https://hdl.handle.net/11511/66201
Collections
Unclassified, Conference / Seminar
Suggestions
OpenMETU
Core
A Detailed Analysis for the Absorption Coefficient of Multilevel Uncooled Infrared Detectors
Küçük, Serhat; Akın, Tayfun (2011-04-29)
This paper introduces a detailed analysis on the calculation of the absorption coefficient of multilevel uncooled infrared detectors. The analysis is carried out considering a two-level 25 mu m pixel pitch infrared detector with a sandwich type resistor which is divided into sub-regions consisting of different stacks of layers. The absorption coefficients of these different sub-regions are calculated individually by using the cascaded transmission line model, including the main body, arms, and the regions w...
Analysis and Fault Tolerant Control of a Five-Phase Axial Flux Permanent Magnet Synchronous Machine
Bayazıt, Göksenin Hande; Keysan, Ozan; Department of Electrical and Electronics Engineering (2021-9-06)
This study investigates the fault-tolerance capability of an air-cored, axial flux, five-phase permanent magnet synchronous machine. The air-cored stator is designed by adopting a novel winding topology that is called flat winding. The coils of flat winding are made by bending and grouping one within another of the flat wires made of a laser-cut thin aluminum sheet. This topology provides superior current ratings, better cooling performance, and a robust structure for the stator. As the coils are covered w...
A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons
Pekoz, Rengin; Erkoç, Şakir (Elsevier BV, 2009-12-01)
The energetics and the electronic properties of nitrogen- and boron-doped graphene nanoribbons with zigzag edges have been investigated using density functional theory calculations. For the optimized geometry configurations, vibrational frequency analysis and wavefunction stability tests have been carried out. Different doping site optimizations for a model nanoribbon have been performed and formation energy values of these sites revealed that zigzag edgesite for both of the dopants were the most favorable ...
Analytical Computation of the Instantaneous Transient Magnetic Flux and Eddy Current Losses in the Armature of a Magnetic Actuator
Raminosoa, Ando; Chillet, Christian; Fassenet, Marylin; Yonnet, Jean-Paul (2011-09-10)
An analytical method for computing the instantaneous transient magnetic flux and the eddy currents losses in the armature of an actuator driven by current is proposed. The analytical method consists in modeling the armature by a circuit with reluctances and "eddy inductances". The difference between this work and the previous ones is the fact that the analytical expressions of reluctances and "eddy inductances" are identified from the Joule effect losses and the magnetic energy in the studied armature, when...
A new method to estimate the absorption coefficient for uncooled infrared detectors
Tanrikulu, M. Yusuf; Civitci, Fehmi; Akın, Tayfun (2008-03-20)
his paper introduces a new method to estimate the total absorption coefficient of uncooled infrared detectors. Current approaches in the literature model the infrared detectors as cascaded transmission lines representing the detector layers, and this model can easily be used to estimate the absorption coefficient if the detector has the same structure at every point. However, the state of the art uncooled infrared detectors do not have same structure at every point, making it not feasible to use this simple...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Zafarani, M. Moallem, and M. A. Ghadamyari, “A New Method for Leakage Inductance Calculation of Transverse Flux Machines,” 2011, p. 699, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66201.