Designing heat exchanger with spatially variable surface area for passive cooling of PEM fuel cell

2013-03-01
Ozden, Ender
Tolj, Ivan
Barbir, Frano
The purpose of this work was to design a heat exchanger for a Polymer Electrolyte Membrane (PEM) fuel cell, which would ensure such a temperature profile along the fuel cell cathode channel resulting in close to 100% relative humidity along the channel without external humidification. To achieve this, 3D numerical simulations of a single PEM fuel cell were performed using commercial Computational Fluid Dynamics (CFD) software (ANSYS Fluent). Based on the simulation results a variable surface area finned heat exchanger was designed which allows for passive fuel cell cooling. The results indicate that it is possible to obtain such temperature and relative humidity conditions inside the fuel cell cathode channel, using a passive heat exchanger with variable surface area.
APPLIED THERMAL ENGINEERING

Suggestions

Numerical Investigation of thermal management of Solid Oxide Fuel Cells by flow arrangement
Şen, Fırat; Tarı, İlker (null; 2015-05-29)
SolidOxide Fuel Cells (SOFCs) are electrochemical cells working at high temperatures. One of the important problems in planar SOFC designs is the non-uniformtemperature distribution on the plane of the cell due to the waste heat produced by electrochemical reactions. Another important problem of SOFCs is the low fuel utilization ratio. In this study, the effect of the flow arrangement on the temperature distribution, which causes the thermal stresses, and the met...
Modeling and sensitivity analysis of high temperature PEM fuel cells by using Comsol Multiphysics
Sezgin, Berna; Caglayan, Dilara Gulcin; DEVRİM, YILSER; Steenberg, Thomas; Eroğlu, İnci (2016-06-22)
The objective of this study is to observe the effect of the critical design parameters, velocities of inlet gases (hydrogen and air) and the conductivity of polymer membrane, on the performance of a high temperature PEM fuel cell. A consistent and systematic mathematical model is developed in order to study the effect of these parameters. The model is applied to an isothermal, steady state, three-dimensional PEM fuel cell in order to observe concentration profiles, current density profiles and polarization ...
Modeling of a high temperature PEM fuel cell
Sezgin, Berna; Eroğlu, İnci; Devrim, Yılser; Department of Chemical Engineering (2016)
High temperature polymer electrolyte membrane fuel cells (HT-PEMFC) are considered as the next generation of fuel cells since high temperature operation for PEM fuel cells has several advantages such as single phase operation, high carbon monoxide tolerance, low or zero carbon emission and removal of some equipment from the system. In order to obtain high performances, HT-PEMFC systems should be optimized in terms of dimensions, materials, operating conditions and other parameters. Modeling can help to pre-...
Development of 100w portable fuel cell system working with sodium borohydride
Erkan, Serdar; Eroğlu, İnci; Department of Chemical Engineering (2011)
Fuel cells are electricity generators which convert chemical energy of hydrogen directly to electricity by means of electrochemical oxidation and reduction reactions. A single proton exchange membrane (PEM) fuel cell can only generate electricity with a potential between 0.5V and 1V. The useful potential can be achieved by stacking cells in series to form a PEM fuel cell stack. There is a potential to utilize 100W class fuel cells. Fuelling is the major problem of the portable fuel cells. The aim of this th...
Novel structured electrolytes for solid oxide fuel cells
TİMURKUTLUK, BORA; Celik, Selahattin; Timurkutluk, Cigdem; Mat, Mahmut D.; Kaplan, Yuksel (2012-09-01)
Novel grate type electrolytes are designed and fabricated to improve the cell performance and to lower the operation temperature of intermediate temperature electrolyte supported solid oxide fuel cells based on scandium and ceria stabilized zirconia by partly reducing the electrolyte thickness. The characteristics of three different small size cells (11.62 cm(2) active area) having various electrolyte designs are investigated. A standard electrolyte supported cell is also produced as a base case for compari...
Citation Formats
E. Ozden, I. Tolj, and F. Barbir, “Designing heat exchanger with spatially variable surface area for passive cooling of PEM fuel cell,” APPLIED THERMAL ENGINEERING, pp. 1339–1344, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66367.