Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An axially symmetric scalar field and teleparallelism
Date
2007-03-01
Author
Korunur, M.
Salti, M.
Aydogdu, O.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
124
views
0
downloads
Cite This
An axially symmetric scalar field is considered in teleparallel gravity. We calculate, respectively, the tensor, the vector and the axial-vector parts of torsion and energy, momentum and angular momentum in the ASSF. We find the vector parts are in the radial and (e) over cap (theta) directions, the axial-vector, momentum and angular momentum vanish identically, but the energy distribution is different from zero. The vanishing axial-vector part of torsion gives us the result that there occurs no deviation in the spherical symmetry of the spacetime. Consequently, there exists no inertia field with respect to a Dirac particle, and the spin vector of a Dirac particle becomes constant. The result for the energy is the same as obtained by Radinschi. Next, this work also (a) supports the viewpoint of Lessner that the Moller energy-momentumcomplex is a powerful concept for the energy-momentum, (b) sustains the importance of the energy-momentum definitions in the evaluation of the energy distribution of a given spacetime, and (c) supports the hypothesis by Cooperstock that the energy is confined to the region of non-vanishing energy-momentumtens or of the matter and all non-gravitational fields.
Subject Keywords
Physics and Astronomy (miscellaneous)
,
Engineering (miscellaneous)
URI
https://hdl.handle.net/11511/66434
Journal
EUROPEAN PHYSICAL JOURNAL C
DOI
https://doi.org/10.1140/epjc/s10052-006-0195-1
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Symmetric Surface Momentum and Centripetal Force for a Particle on a Curved Surface
Shikakhwa, M. S. (IOP Publishing, 2018-09-01)
The Hermitian surface momentum operator for a particle confined to a 2D curved surface spanned by orthogonal coordinates and embedded in 3D space is expressed as a symmetric expression in derivatives with respect to the surface coordinates and so is manifestly along the surface. This is an alternative form to the one reported in the literature and usually named geometric momentum, which has a term proportional to the mean curvature along the direction normal to the surface, and so "apparently" not along the...
THE ENERGY LOCALIZATION PROBLEM AND THE RENORMALIZED VACUUM ENERGY IN STATIC ROBERTSON-WALKER UNIVERSES
BAYM, SS (Springer Science and Business Media LLC, 1994-10-01)
We calculate the renormalized quantum vacuum energy inside a spherical boundary for the massless conformal scalar field in curved background Robertson-Walker geometry. We use the mode sum method with an exponential cuttoff. In our calculations we do not make assumptions about the exterior geometry or the global topology of the universe.
Closed timelike curves and geodesics of Godel-type metrics
Gleiser, RJ; Gurses, M; Karasu, Atalay; Sarıoğlu, Bahtiyar Özgür (IOP Publishing, 2006-04-07)
it is shown explicitly that when the characteristic vector field that defines a Godel-type metric is also a Killing vector, there always exist closed timelike or null curves in spacetimes described by such a metric. For these geometries, the geodesic curves are also shown to be characterized by a lower-dimensional Lorentz force equation for a charged point particle in the relevant Riemannian background. Moreover, two explicit examples are given for which timelike and null geodesics can never be closed.
Spherically symmetric solutions of Einstein plus non-polynomial gravities
Deser, S.; Sarıoğlu, Bahtiyar Özgür; Tekin, Bayram (Springer Science and Business Media LLC, 2008-01-01)
We obtain the static spherically symmetric solutions of a class of gravitational models whose additions to the General Relativity (GR) action forbid Ricci-flat, in particular, Schwarzschild geometries. These theories are selected to maintain the (first) derivative order of the Einstein equations in Schwarzschild gauge. Generically, the solutions exhibit both horizons and a singularity at the origin, except for one model that forbids spherical symmetry altogether. Extensions to arbitrary dimension with a cos...
Energy distribution in Reissner-Nordstrom anti-de Sitter black holes in the Moller prescription
Salti, M.; Aydogdu, O. (Springer Science and Business Media LLC, 2006-07-01)
The energy (due to matter plus fields including gravity) distribution of the Reissner-Nordstrom anti-de Sitter (RN AdS) black holes is studied by using the Moller energy-momentum definition in general relativity. This result is compared with the energy expression obtained by using the Einstein and Tolman complexes. The total energy depends on the black hole mass M and charge Q and the cosmological constant A. The energy distribution of the RN AdS is also calculated by using the M phi ller prescription in te...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Korunur, M. Salti, and O. Aydogdu, “An axially symmetric scalar field and teleparallelism,”
EUROPEAN PHYSICAL JOURNAL C
, pp. 101–107, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66434.